Handbook of Differential Equations: Evolutionary Equations: Handbook of Differential Equations: Evolutionary Equations, cartea 1
Editat de C.M. Dafermos, Eduard Feireislen Limba Engleză Hardback – 23 aug 2004
Toate formatele și edițiile | Preț | Express |
---|---|---|
Hardback (2) | 1073.29 lei 5-7 săpt. | |
ELSEVIER SCIENCE – 23 aug 2004 | 1073.29 lei 5-7 săpt. | |
ELSEVIER SCIENCE – 4 oct 2005 | 1285.66 lei 6-8 săpt. |
Preț: 1073.29 lei
Preț vechi: 1179.43 lei
-9% Nou
Puncte Express: 1610
Preț estimativ în valută:
205.43€ • 220.91$ • 171.22£
205.43€ • 220.91$ • 171.22£
Carte tipărită la comandă
Livrare economică 13-27 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780444511317
ISBN-10: 0444511318
Pagini: 578
Dimensiuni: 165 x 240 x 27 mm
Greutate: 1.18 kg
Ediția:New.
Editura: ELSEVIER SCIENCE
Seria Handbook of Differential Equations: Evolutionary Equations
ISBN-10: 0444511318
Pagini: 578
Dimensiuni: 165 x 240 x 27 mm
Greutate: 1.18 kg
Ediția:New.
Editura: ELSEVIER SCIENCE
Seria Handbook of Differential Equations: Evolutionary Equations
Public țintă
University libraries and Research mathematicians.Cuprins
W.Arendt: Semigroups and evolution equations: Calculus, regularity and kernel estimates
A.Bressan: The front tracking method for systems of conservation laws
E.DiBenedetto, J.M.Urbano,V.Vespri: Current issues on singular and degenerate evolution equations;
L.Hsiao, S.Jiang: Nonlinear hyperbolic-parabolic coupled systems
A.Lunardi: Nonlinear parabolic equations and systems
D.Serre:L1-stability of nonlinear waves in scalar conservation laws
B.Perthame:Kinetic formulations of parabolic and hyperbolic PDE’s: from theory to numerics
A.Bressan: The front tracking method for systems of conservation laws
E.DiBenedetto, J.M.Urbano,V.Vespri: Current issues on singular and degenerate evolution equations;
L.Hsiao, S.Jiang: Nonlinear hyperbolic-parabolic coupled systems
A.Lunardi: Nonlinear parabolic equations and systems
D.Serre:L1-stability of nonlinear waves in scalar conservation laws
B.Perthame:Kinetic formulations of parabolic and hyperbolic PDE’s: from theory to numerics