Handbook of Fingerprint Recognition
Autor Davide Maltoni, Dario Maio, Anil K. Jain, Jianjiang Fengen Limba Engleză Hardback – 5 iul 2022
With their distinctiveness and stability over time, fingerprints continue to be the most widely used anatomical characteristic in systems that automatically recognize a person's identity.
This fully updated third edition provides in-depth coverage of the state-of-the-art in fingerprint recognition readers, feature extraction, and matching algorithms and applications. Deep learning (resurgence beginning around 2012) has been a game changer for artificial intelligence and, in particular, computer vision and biometrics. Performance improvements (both recognition accuracy and speed) for most biometric modalities can be attributed to the use of deep neural networks along with availability of large training sets and powerful hardware. Fingerprint recognition has also been approached by deep learning, resulting in effective and efficient methods for automated recognition and for learning robust fixed-length representations. However, the tiny ridge details in fingerprints known as minutiae are still competitive with the powerful representations learned by huge neural networks trained on big data.
This fully updated third edition provides in-depth coverage of the state-of-the-art in fingerprint recognition readers, feature extraction, and matching algorithms and applications. Deep learning (resurgence beginning around 2012) has been a game changer for artificial intelligence and, in particular, computer vision and biometrics. Performance improvements (both recognition accuracy and speed) for most biometric modalities can be attributed to the use of deep neural networks along with availability of large training sets and powerful hardware. Fingerprint recognition has also been approached by deep learning, resulting in effective and efficient methods for automated recognition and for learning robust fixed-length representations. However, the tiny ridge details in fingerprints known as minutiae are still competitive with the powerful representations learned by huge neural networks trained on big data.
Features & Benefits:
- Reflects the progress made in automated techniques for fingerprint recognition over the past five decades
- Reviews the evolution of sensing technology: from bulky optical devices to in-display readers in smartphones
- Dedicates an entire new chapter to latent fingerprint recognition, which is nowadays feasible in “lights-out” mode
- Introduces classical and learning-based techniques for local orientation extraction, enhancement, and minutiae detection
- Provides an updated review of presentation-attack-detection techniques and their performance evaluation
- Discusses the evolution of minutiae matching from rich local descriptors to Minutiae Cylinder Code
- Presents the development of feature-based matching: from FingerCode to handcrafted textural features to deep features
- Reviews fingerprint synthesis, including recent Generative Adversarial Networks
The revised edition of this must-read reference, written by leading international researchers, covers all critical aspects of fingerprint security system design and technology. It is an essential resource for all security and biometrics professionals, researchers, practitioners, developers, and systems administrators, and can serve as an easy-to-read reference for an undergraduate or graduate course on biometrics.
Davide Maltoni is full professor in the Department of Computer Science (DISI) at the University of Bologna, where he also co-directs the Biometrics Systems Laboratory (BioLab).
Dario Maio is full professor in the DISI and a co-director of the BioLab.
Anil K. Jain is university distinguished professor in the Department of Computer Science and Engineering at Michigan State University. Jianjiang Feng is associate professor in the Department of Automation at Tsinghua University.
Davide Maltoni is full professor in the Department of Computer Science (DISI) at the University of Bologna, where he also co-directs the Biometrics Systems Laboratory (BioLab).
Dario Maio is full professor in the DISI and a co-director of the BioLab.
Anil K. Jain is university distinguished professor in the Department of Computer Science and Engineering at Michigan State University. Jianjiang Feng is associate professor in the Department of Automation at Tsinghua University.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 771.23 lei 38-45 zile | |
Springer International Publishing – 5 iul 2023 | 771.23 lei 38-45 zile | |
Hardback (1) | 1079.09 lei 38-45 zile | |
Springer International Publishing – 5 iul 2022 | 1079.09 lei 38-45 zile |
Preț: 1079.09 lei
Preț vechi: 1348.86 lei
-20% Nou
Puncte Express: 1619
Preț estimativ în valută:
206.61€ • 215.15$ • 171.42£
206.61€ • 215.15$ • 171.42£
Carte tipărită la comandă
Livrare economică 10-17 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030836238
ISBN-10: 3030836231
Pagini: 522
Ilustrații: XXIV, 522 p. 269 illus., 82 illus. in color. With online files/update.
Dimensiuni: 168 x 240 mm
Greutate: 1.32 kg
Ediția:3rd ed. 2022
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3030836231
Pagini: 522
Ilustrații: XXIV, 522 p. 269 illus., 82 illus. in color. With online files/update.
Dimensiuni: 168 x 240 mm
Greutate: 1.32 kg
Ediția:3rd ed. 2022
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Fingerprint sensing.- Fingerprint analysis and representation.- Fingerprint matching.- Fingerprint classification and indexing.- Latent fingerprint recognition.- Fingerprint synthesis.- Fingerprint individuality.- Securing fingerprint systems.
Notă biografică
Dr. Davide Maltoni and Dr. Dario Maio are full Professors in the Department of Computer Science and Engineering at the University of Bologna, Italy. Dr. Anil K. Jain is a University Distinguished Professor at the Department of Computer Science and Engineering at Michigan State University, USA. Dr. Jianjiang Feng is an Associate Professor in the Department of Automation at Tsinghua University, China.
The authors’ extensive list of publications on biometrics include the Springer titles Encyclopedia of Biometrics, Introduction to Biometrics, Handbook of Face Recognition, Handbook of Biometrics, Handbook of Multibiometrics, Human Identification Based on Gait, Biometric Systems, Palmprint Authentication.
The authors’ extensive list of publications on biometrics include the Springer titles Encyclopedia of Biometrics, Introduction to Biometrics, Handbook of Face Recognition, Handbook of Biometrics, Handbook of Multibiometrics, Human Identification Based on Gait, Biometric Systems, Palmprint Authentication.
Textul de pe ultima copertă
With their distinctiveness and stability over time, fingerprints continue to be the most widely used anatomical characteristic in systems that automatically recognize a person's identity.
This fully updated third edition provides in-depth coverage of the state-of-the-art in fingerprint recognition readers, feature extraction, and matching algorithms and applications. Deep learning (resurgence beginning around 2012) has been a game changer for artificial intelligence and, in particular, computer vision and biometrics. Performance improvements (both recognition accuracy and speed) for most biometric modalities can be attributed to the use of deep neural networks along with availability of large training sets and powerful hardware. Fingerprint recognition has also been approached by deep learning, resulting in effective and efficient methods for automated recognition and for learning robust fixed-length representations. However, the tiny ridge details in fingerprints knownas minutiae are still competitive with the powerful representations learned by huge neural networks trained on big data.
This fully updated third edition provides in-depth coverage of the state-of-the-art in fingerprint recognition readers, feature extraction, and matching algorithms and applications. Deep learning (resurgence beginning around 2012) has been a game changer for artificial intelligence and, in particular, computer vision and biometrics. Performance improvements (both recognition accuracy and speed) for most biometric modalities can be attributed to the use of deep neural networks along with availability of large training sets and powerful hardware. Fingerprint recognition has also been approached by deep learning, resulting in effective and efficient methods for automated recognition and for learning robust fixed-length representations. However, the tiny ridge details in fingerprints knownas minutiae are still competitive with the powerful representations learned by huge neural networks trained on big data.
Features & Benefits:
- Reflects the progress made in automated techniques for fingerprint recognition over the past five decades
- Reviews the evolution of sensing technology: from bulky optical devices to in-display readers in smartphones
- Dedicates an entire new chapter to latent fingerprint recognition, which is nowadays feasible in “lights-out” mode
- Introduces classical and learning-based techniques for local orientation extraction, enhancement, and minutiae detection
- Provides an updated review of presentation-attack-detection techniques and their performance evaluation
- Discusses the evolution of minutiae matching from rich local descriptors to Minutiae Cylinder Code
- Presents the development of feature-based matching: from FingerCode to handcrafted textural features to deep features
- Reviews fingerprint synthesis, including recent Generative Adversarial Networks
The revised edition of this must-read reference, written by leading international researchers, covers all critical aspects of fingerprint security system design and technology. It is an essential resource for all security and biometrics professionals, researchers, practitioners, developers, and systems administrators, and can serve as an easy-to-read reference for an undergraduate or graduate course on biometrics.
Davide Maltoni is full professor in the Department of Computer Science (DISI) at the University of Bologna, where he also co-directs the Biometrics Systems Laboratory (BioLab).
Dario Maio is full professor in the DISI and a co-director of the BioLab.
Anil K. Jain is university distinguished professor in the Department of Computer Science and Engineering at Michigan State University. Jianjiang Feng is associate professor in the Department of Automation at Tsinghua University.
Davide Maltoni is full professor in the Department of Computer Science (DISI) at the University of Bologna, where he also co-directs the Biometrics Systems Laboratory (BioLab).
Dario Maio is full professor in the DISI and a co-director of the BioLab.
Anil K. Jain is university distinguished professor in the Department of Computer Science and Engineering at Michigan State University. Jianjiang Feng is associate professor in the Department of Automation at Tsinghua University.
Caracteristici
Using the successful formula of previous editions, the book includes recent state-of-the-art techniques Covers all the major topics, concepts and methods for fingerprint security systems Contains helpful chapter overviews and summaries and consistent notation, for ease of use and accessibility