Handbook of HydroInformatics: Volume II: Advanced Machine Learning Techniques
Editat de Saeid Eslamian, Faezeh Eslamianen Limba Engleză Paperback – 8 dec 2022
This is an interdisciplinary book, and the audience includes postgraduates and early-career researchers interested in: Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, Chemical Engineering.
- Key insights from 24 contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc.
- Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison.
- Defines both the designing of good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (3) | 757.41 lei 5-7 săpt. | |
ELSEVIER SCIENCE – 14 dec 2022 | 757.41 lei 5-7 săpt. | |
ELSEVIER SCIENCE – 8 dec 2022 | 811.06 lei 5-7 săpt. | |
ELSEVIER SCIENCE – 5 dec 2022 | 813.74 lei 5-7 săpt. |
Preț: 811.06 lei
Preț vechi: 1056.90 lei
-23% Nou
Puncte Express: 1217
Preț estimativ în valută:
155.20€ • 169.26$ • 130.86£
155.20€ • 169.26$ • 130.86£
Carte tipărită la comandă
Livrare economică 17 aprilie-01 mai
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128219614
ISBN-10: 0128219610
Pagini: 418
Ilustrații: 100 illustrations (20 in full color)
Dimensiuni: 216 x 276 mm
Greutate: 0.97 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128219610
Pagini: 418
Ilustrații: 100 illustrations (20 in full color)
Dimensiuni: 216 x 276 mm
Greutate: 0.97 kg
Editura: ELSEVIER SCIENCE
Cuprins
35. Bayesian Estimation
36. Cloud and Cluster Computing
37. Computational and Statistical Convergence Rates
38. Concentration of Measure
39. Cross Validation
40. Data Assimilation
41. Data Fusion Techniques
42. Deep Learning
43. Empirical Orthogonal Functions
44. Empirical Orthogonal Teleconnection
45. Error Modeling
46. GARCH Time Series Analysis
47. Gradient-Based Optimization
48. Internet-Based Methods
49. Internet of Things
50. Kernel-Based Modeling
51. Large Eddy Simulation
52. Markov Chain Monte Carlo Methods
53. Minimax Estimation
54. Model Fusion Approach
55. Monitoring Quality Sensors
56. Nested Reinforcement Learning
57. Nested Stochastic Dynamic Programming
58. Nonparametric Density estimation
59. Nonparametric Regressions
60. Operational Real-Time Forecasting
61. Patter Recognition
62. Self-Adaptive Evolutionary Extreme Learning Machine
63. Stochastic Learning Algorithms
64. Supercomputing Methods (Parallelization/GPU)
65. Transient-Based Time-Frequency Analysis
66. Uncertainty-Based Resiliency Evaluation
67. Volume-Based Inverse Mode
68. WebGIS
36. Cloud and Cluster Computing
37. Computational and Statistical Convergence Rates
38. Concentration of Measure
39. Cross Validation
40. Data Assimilation
41. Data Fusion Techniques
42. Deep Learning
43. Empirical Orthogonal Functions
44. Empirical Orthogonal Teleconnection
45. Error Modeling
46. GARCH Time Series Analysis
47. Gradient-Based Optimization
48. Internet-Based Methods
49. Internet of Things
50. Kernel-Based Modeling
51. Large Eddy Simulation
52. Markov Chain Monte Carlo Methods
53. Minimax Estimation
54. Model Fusion Approach
55. Monitoring Quality Sensors
56. Nested Reinforcement Learning
57. Nested Stochastic Dynamic Programming
58. Nonparametric Density estimation
59. Nonparametric Regressions
60. Operational Real-Time Forecasting
61. Patter Recognition
62. Self-Adaptive Evolutionary Extreme Learning Machine
63. Stochastic Learning Algorithms
64. Supercomputing Methods (Parallelization/GPU)
65. Transient-Based Time-Frequency Analysis
66. Uncertainty-Based Resiliency Evaluation
67. Volume-Based Inverse Mode
68. WebGIS