Cantitate/Preț
Produs

Handbook of Missing Data Methodology: Chapman & Hall/CRC Handbooks of Modern Statistical Methods

Editat de Geert Molenberghs, Garrett Fitzmaurice, Michael G. Kenward, Anastasios Tsiatis, Geert Verbeke
en Limba Engleză Hardback – 6 noi 2014
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research.
Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods.
The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters.
Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41823 lei  3-5 săpt. +2086 lei  7-13 zile
  CRC Press – 18 dec 2020 41823 lei  3-5 săpt. +2086 lei  7-13 zile
Hardback (1) 81052 lei  6-8 săpt.
  CRC Press – 6 noi 2014 81052 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Handbooks of Modern Statistical Methods

Preț: 81052 lei

Preț vechi: 98844 lei
-18% Nou

Puncte Express: 1216

Preț estimativ în valută:
15516 15966$ 13079£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781439854617
ISBN-10: 1439854610
Pagini: 598
Ilustrații: 59 black & white illustrations, 84 black & white tables
Dimensiuni: 178 x 254 x 33 mm
Greutate: 1.26 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Handbooks of Modern Statistical Methods

Locul publicării:Boca Raton, United States

Cuprins

Preliminaries. Likelihood and Bayesian Methods, Semiparametric Methods. Multiple Imputation. Sensitivity Analysis. Special Topics. Index.

Notă biografică

Geert Molenberghs, Garrett Fitzmaurice, Michael G. Kenward, Anastasios Tsiatis, Geert Verbeke

Recenzii

"There is evidence of a strong editorial hand—each chapter begins with a table of contents; the notation is surprisingly well standardized for a work by 20 authors; and the number of typos is modest. The chapters refer to each other, but one can read them independently and in any order...This handbook summarizes the authors’ research on a range of missing-data problems of contemporary interest. Methodologists who seek a one-volume entry point into the field will find it useful."
Journal of the American Statistical Association, May 2016

Descriere

This handbook presents many methodological advances and the latest applications of missing data methods in empirical research. It outlines a general taxonomy of missing data mechanisms and their implications for analysis and describes alternatives for estimating models when data are missing. The book covers a range of approaches that assess the sensitivity of inferences to alternative assumptions about the missing data process. It also discusses how to handle missing data in clinical trials and sample surveys.