Handbook of Probabilistic Models
Editat de Pijush Samui, Dieu Tien Bui, Subrata Chakraborty, Ravinesh Deoen Limba Engleză Paperback – 7 oct 2019
Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more.
- Explains the application of advanced probabilistic models encompassing multidisciplinary research
- Applies probabilistic modeling to emerging areas in engineering
- Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
Preț: 818.01 lei
Preț vechi: 1216.32 lei
-33% Nou
Puncte Express: 1227
Preț estimativ în valută:
156.57€ • 162.84$ • 131.20£
156.57€ • 162.84$ • 131.20£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128165140
ISBN-10: 0128165146
Pagini: 590
Dimensiuni: 152 x 229 x 36 mm
Greutate: 0.78 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128165146
Pagini: 590
Dimensiuni: 152 x 229 x 36 mm
Greutate: 0.78 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. Monte Carlo Simulation
2. Stochastic Optimization Method
3. Reliability Analysis
4. Stochastic Finite Element Method
5. Kalman Filter
6. Random matrix
7. Markov Chain
8. Gaussian Process Regression
9. Logistic regression
10. Geostatistics
11. Kriging
12. Bayesian inference
13. Bayesian updating
14. Probabilistic Neural Network
15. SVM, Relevance vector machine
2. Stochastic Optimization Method
3. Reliability Analysis
4. Stochastic Finite Element Method
5. Kalman Filter
6. Random matrix
7. Markov Chain
8. Gaussian Process Regression
9. Logistic regression
10. Geostatistics
11. Kriging
12. Bayesian inference
13. Bayesian updating
14. Probabilistic Neural Network
15. SVM, Relevance vector machine