Handbooks in Operations Research and Management Science: Simulation: Handbooks in Operations Research and Management Science, cartea 13
Editat de Shane G. Henderson, Barry L. Nelsonen Limba Engleză Hardback – sep 2006
* Tightly focused chapters written by experts* Surveys concepts, principles, tools, and techniques that underlie the theory and practice of stochastic simulation design and analysis* Provides an up-to-date reference for both simulation researchers and advanced simulation users
Preț: 1383.21 lei
Preț vechi: 1894.80 lei
-27% Nou
Puncte Express: 2075
Preț estimativ în valută:
264.76€ • 278.16$ • 222.51£
264.76€ • 278.16$ • 222.51£
Carte tipărită la comandă
Livrare economică 11-25 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780444514288
ISBN-10: 0444514287
Pagini: 692
Dimensiuni: 165 x 240 x 46 mm
Greutate: 1.06 kg
Editura: ELSEVIER SCIENCE
Seria Handbooks in Operations Research and Management Science
ISBN-10: 0444514287
Pagini: 692
Dimensiuni: 165 x 240 x 46 mm
Greutate: 1.06 kg
Editura: ELSEVIER SCIENCE
Seria Handbooks in Operations Research and Management Science
Public țintă
computer scientists, financial analysts, industrial engineers, management scientists, operations researchersCuprins
1. Stochastic computer simulation (S.G. Henderson, B.L. Nelson).
2. Mathematics for simulation (S.G. Henderson).
3. Uniform random number generation (P. L’Ecuyer). 4. Non-Uniform random variate generation (L. Devroye).
5. Multivariate input processes (B. Biller, S. Ghosh).
6. Arrival processes, random lifetimes, and random objects (L. M. Leemis).
7. Implementing representations of uncertainty (W.D. Kelton).
8. Statistical estimation in computer simulation (C. Alexopoulos).
9. Subjective probability and Bayesian methodology (S.E. Chick).
10. A Hilbert space approach to variance reduction (R.Szechtman).
11. Rare-event simulation techniques(S.Juneja, P.Shahabuddin).
12. Quasi-random number techniques (C. Lemieux). 13. Analysis for design (W. Whitt).
14. Resampling methods (R.C.H. Cheng).
15. Correlation-based methods for output analysis (D. Goldsman, B.L. Nelson).
16. Simulation algorithms for regenerative processes (P.W. Glynn).
17. Selecting the best system (S.-H. Kim, B. L. Nelson).
18. Metamodel-based simulation optimization (R.R. Barton, M. Meckesheimer).
19. Gradient estimation (M.C. Fu).
20. An overview of simulation optimization via random search (S.Andratdóttir).
21. Metaheuristics (S. Ólafsson).
2. Mathematics for simulation (S.G. Henderson).
3. Uniform random number generation (P. L’Ecuyer). 4. Non-Uniform random variate generation (L. Devroye).
5. Multivariate input processes (B. Biller, S. Ghosh).
6. Arrival processes, random lifetimes, and random objects (L. M. Leemis).
7. Implementing representations of uncertainty (W.D. Kelton).
8. Statistical estimation in computer simulation (C. Alexopoulos).
9. Subjective probability and Bayesian methodology (S.E. Chick).
10. A Hilbert space approach to variance reduction (R.Szechtman).
11. Rare-event simulation techniques(S.Juneja, P.Shahabuddin).
12. Quasi-random number techniques (C. Lemieux). 13. Analysis for design (W. Whitt).
14. Resampling methods (R.C.H. Cheng).
15. Correlation-based methods for output analysis (D. Goldsman, B.L. Nelson).
16. Simulation algorithms for regenerative processes (P.W. Glynn).
17. Selecting the best system (S.-H. Kim, B. L. Nelson).
18. Metamodel-based simulation optimization (R.R. Barton, M. Meckesheimer).
19. Gradient estimation (M.C. Fu).
20. An overview of simulation optimization via random search (S.Andratdóttir).
21. Metaheuristics (S. Ólafsson).