Cantitate/Preț
Produs

High-Energy Chemistry and Processing in Liquids

Editat de Yoshie Ishikawa, Takahiro Nakamura, Morihisa Saeki, Tadatake Sato, Teruki Sugiyama, Hiroyuki Wada, Tomoyuki Yatsuhashi
en Limba Engleză Hardback – 6 feb 2022
This book focuses on chemical reactions and processing under extreme conditions—how materials react with highly concentrated active species and/or in a very confined high-temperature and high-pressure volume. Those ultimate reaction environments created by a focused laser beam, discharges, ion bombardments, or microwaves provide characteristic nano- and submicron-sized products and functional nanostructures. The book explores the chemistry and processing of metals and non-metals as well as molecules that are strongly dependent on the energy deposition processes and character of the materials. Descriptions of a wide range of topics are given from the perspective of a variety of research methodologies, material preparations, and applications. The reader is led to consider and review how a high-energy source interacts with materials, and what the key factors are that determine the quality and quantity of nanoproducts and nano-processing.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 98539 lei  6-8 săpt.
  Springer Nature Singapore – 7 feb 2023 98539 lei  6-8 săpt.
Hardback (1) 99127 lei  6-8 săpt.
  Springer Nature Singapore – 6 feb 2022 99127 lei  6-8 săpt.

Preț: 99127 lei

Preț vechi: 120887 lei
-18% Nou

Puncte Express: 1487

Preț estimativ în valută:
18970 19764$ 15773£

Carte tipărită la comandă

Livrare economică 10-24 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811677977
ISBN-10: 9811677972
Pagini: 356
Ilustrații: VIII, 356 p. 225 illus., 163 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.69 kg
Ediția:1st ed. 2022
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Part I: High-energy chemistry and processing of metals.- 1. Laser-induced bubble generation on excitation of gold nanoparticles.- 2. Metal and alloy nanoparticles formed by laser-induced nucleation method.- 3. Laser-induced reduction and particle formation of precious metal ions in a solution: Application to metal recovery.- 4. Synthesis of metal nano-particles induced by plasma-assisted electrolysis.- 5. Controllable surface modification of colloidal nanoparticles using laser ablation in liquids and its utilization.- Part II: High-energy processing of nonmetals.- 6. Fabrication and control of semiconductor random lasers using laser processing techniques.- 7. Formation mechanism of spherical submicrometer particles by pulsed laser melting in liquid.- 8. Mass production of spherical submicrometer particles by flow-style pulsed laser melting in liquid.- 9. Material processing for colloidal silicon quantum dot formation.- 10. Processing of transparent materials using laser-induced high-energy state in liquid.- 11. Functional nanomaterial and nanostructure synthesized by femtosecond laser pulses.- 12. Preparation of functional nanoparticles by laser process in liquid and their optical applications.- Part III: High-energy chemistry of nonmetals.- 13. Nanoscale transient laser heating and the related chemical process of organic solid.- 14. Fundamentals and applications of novel high-energy reaction fields by microwave chemistry.- 15. Study on the preparation and photocatalytic activity of the laser modified photocatalysis.- 16. Control of crystallization by intense focused laser beam.- 17. Electrocatalysts developed from ion-implanted carbon materials.- 18. Carbon nanoparticle production in plasma filaments generated by intense femtosecond laser pulses.

Notă biografică

Yoshie Ishikawa has been a senior researcher at the National Institute of Advanced Industrial Science and Technology (AIST) since 2013. She received her Ph.D. from Kumamoto University in 2003 and was an associate professor in Kagawa University until 2013. Her scientific focus is on the fabrication and application of pulsed laser melting in liquids for metallic and inorganic sub-micrometer particle synthesis.

Takahiro Nakamura is a graduate of Tohoku University, where he received his doctorate under the guidance of Prof. Eichiro Matsubara in 2004. He began his academic career as an assistant professor in 2005 at the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University. He now is an associate professor at the same institute. His current research interests are laser materials processing, especially the generation of metal and/or alloy nanoparticles by high-intensity ultra-short pulse laser irradiation in liquids.

Morihisa Saeki graduated from The University of Tokyo and received his doctorate there under the guidance of Prof. Takashi Nagata in 1999. He has been a senior researcher in the National Institutes for Quantum and Radiological Science and Technology since 2016. He was a visiting scientist at the Institute of Radiochemistry, Helmholtz-Zentrum Dresden-Rossendorf (Germany) in 2010. His current research interests are the application of laser-induced particle formation in liquids and elucidation of its mechanism using time-resolved X-ray absorption spectroscopy.

Tadatake Sato is a graduate of Kyoto University, where he completed his doctorate under the guidance of Prof. Kazuyoshi Tanaka in 1998. He now is a researcher at the National Institute of Advanced Industrial Science and Technology (AIST). His current research interests are laser processing of various materials using unique laser-induced phenomena.

Teruki Sugiyama received his doctoratefrom Nankai University, China, under the supervision of Professors Teruo Matsuura and Jiben Meng in 2002. He has been a professor of applied chemistry at the College of Science, National Chiao Tung University since 2020. His research group has explored the possibility of high-energy laser-based phenomena such as optical tweezers and laser ablation in molecular/cluster systems. He has been particularly devoted to applying the optical tweezers method to crystal chemistry, and his group received the Best Paper Award from the Japanese Association for Crystal Growth (JACG) for their paper entitled “Control of Amino Acid and Protein Crystallization by Optical Trapping” in 2018. 

Hiroyuki Wada is an associate professor in the Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology (2005 – present). His research is related to optical nanoparticles. He received the B. Eng. in 1990 and the M. Eng. in1992 from the Tokyo Institute of Technology. He was a researcher for Sony Corp. and investigated lasers and laser processes (1992–2005). He was a visiting researcher at Stanford University (USA) in 2001. He received the D. Eng. degree in 2003 from the Tokyo Institute of Technology, and he was a visiting professor at Carnegie Mellon University (USA, 2006–2007).

Tomoyuki Yatsuhashi graduated from the Tokyo Metropolitan University, where he received his doctorate under the guidance of Prof. Haruo Inoue in 1998. He has been a professor of chemistry in the Graduate School of Science, Osaka City University, since 2011. He was a visiting scientist in Germany at the Max-Planck-Institut für Quantenoptik (Alexander von Humboldt Foundation Research Fellowship, 2002–2003). In 2009, he was selected as a researcher of the Precursory Research for Embryonic Science and Technology Program of the Japan Science and Technology Agency. His current research interests are high-energy chemistry in the liquid phase and the photophysics and photochemistry of multiply charged molecular cations. 


Textul de pe ultima copertă

This book focuses on chemical reactions and processing under extreme conditions—how materials react with highly concentrated active species and/or in a very confined high-temperature and high-pressure volume. Those ultimate reaction environments created by a focused laser beam, discharges, ion bombardments, or microwaves provide characteristic nano- and submicron-sized products and functional nanostructures. The book explores the chemistry and processing of metals and non-metals as well as molecules that are strongly dependent on the energy deposition processes and character of the materials. Descriptions of a wide range of topics are given from the perspective of a variety of research methodologies, material preparations, and applications. The reader is led to consider and review how a high-energy source interacts with materials, and what the key factors are that determine the quality and quantity of nanoproducts and nano-processing.

Caracteristici

Categorizes chapters by target materials Emphasizes connections between fundamental sciences and industrial applications Provides schematic descriptions to facilitate the reader’s understanding