Homogenization and Porous Media: Interdisciplinary Applied Mathematics, cartea 6
Editat de Ulrich Hornungen Limba Engleză Hardback – 26 noi 1996
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 640.71 lei 6-8 săpt. | |
Springer – 27 sep 2012 | 640.71 lei 6-8 săpt. | |
Hardback (1) | 645.60 lei 6-8 săpt. | |
Springer – 26 noi 1996 | 645.60 lei 6-8 săpt. |
Din seria Interdisciplinary Applied Mathematics
- 15% Preț: 667.05 lei
- 15% Preț: 484.95 lei
- 20% Preț: 664.77 lei
- 15% Preț: 980.97 lei
- 17% Preț: 528.44 lei
- 18% Preț: 908.71 lei
- 18% Preț: 1011.77 lei
- 15% Preț: 659.67 lei
- Preț: 498.14 lei
- Preț: 528.35 lei
- 15% Preț: 659.02 lei
- 15% Preț: 480.52 lei
- Preț: 390.63 lei
- 18% Preț: 918.61 lei
- Preț: 388.52 lei
- 15% Preț: 647.92 lei
- 15% Preț: 655.60 lei
- 23% Preț: 734.80 lei
- 15% Preț: 660.83 lei
- 18% Preț: 967.08 lei
- Preț: 809.10 lei
- Preț: 403.91 lei
- 18% Preț: 896.84 lei
- 18% Preț: 1004.00 lei
- 18% Preț: 974.19 lei
- Preț: 399.67 lei
- 18% Preț: 1181.99 lei
Preț: 645.60 lei
Preț vechi: 759.54 lei
-15% Nou
Puncte Express: 968
Preț estimativ în valută:
123.56€ • 128.50$ • 103.40£
123.56€ • 128.50$ • 103.40£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387947860
ISBN-10: 0387947868
Pagini: 279
Ilustrații: XVI, 279 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.56 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Interdisciplinary Applied Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387947868
Pagini: 279
Ilustrații: XVI, 279 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.56 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Interdisciplinary Applied Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Basic Idea.- 1.2 First Examples.- 1.3 Diffusion in Periodic Media.- 1.4 Formal Derivation of Darcy’s Law.- 1.5 Formal Derivation of a Distributed Microstructure Model.- 1.6 Remarks on Networks of Resistors, Capillary Tubes, and Cracks.- 2 Percolation Models for Porous Media.- 2.1 Fundamentals of Percolation Theory.- 2.2 Exponent Inequalities for Random Flow and Resistor Networks.- 2.3 Critical Path Analysis in Highly Disordered Porous and Conducting Media.- 3 One-Phase Newtonian Flow.- 3.1 Derivation of Darcy’s Law.- 3.2 Inertia Effects.- 3.3 Derivation of Brinkman’s Law.- 3.4 Double Permeability.- 3.5 On the Transmission Conditions at the Contact Interface between a Porous Medium and a Free Fluid.- 4 Non-Newtonian Flow.- 4.1 Introduction.- 4.2 Equations Governing Creeping Flow of a Quasi-Newtonian Fluid.- 4.3 Description of a Periodic s-Geometry, Construction of the Restriction Operator, and Review of the Results of Two-Scale Convergence in Lq-Spaces.- 4.4 Statement of the Principal Results.- 4.5 Inertia Effects for Non-Newtonian Flows through Porous Media.- 4.6 Proof of the Uniqueness Theorems.- 4.7 Uniform A Priori Estimates.- 4.8 Proof of Theorem A.- 4.9 Proof of Theorem B.- 4.10 Conclusion.- 5 Two-Phase Flow.- 5.1 Derivation of the Generalized Nonlinear Darcy Law.- 5.2 Upscaling Two-Phase Flow Characteristics in a Heterogeneous Reservoir with Capillary Forces (Finite Peclet Number).- 5.3 Upscaling Two-Phase Flow Characteristics in a Heterogeneous Core, Neglecting Capillary Effects (Infinite Peclet Number).- 5.4 The Double-Porosity Model of Immiscible Two-Phase Flow.- 6 Miscible Displacement.- 6.1 Introduction.- 6.2 Upscaling from the Micro-to the Mesoscale.- 6.3 Upscaling from the Meso-to the Macroscale.- 6.4 Discussion.- 7 Thermal Flow.-7.1 Introduction.- 7.2 Basic Equations.- 7.3 Natural Convection in a Bounded Domain.- 7.4 Natural Convection in a Horizontal Porous Layer.- 7.5 Mixed Convection in a Horizontal Porous Layer.- 7.6 Thermal Boundary Layer Approximation.- 7.7 Conclusion.- 8 Poroelastic Media.- 8.1 Acoustics of an Empty Porous Medium.- 8.2 A Priori Estimates for a Saturated Porous Medium.- 8.3 Local Description of a Saturated Porous Medium.- 8.4 Acoustics of a Fluid in a Rigid Porous Medium.- 8.5 Diphasic Macroscopic Behavior.- 8.6 Monophasic Elastic Macroscopic Behavior.- 8.7 Monophasic Viscoelastic Macroscopic Behavior.- 8.8 Acoustics of Double-Porosity Media.- 8.9 Conclusion.- 9 Microstructure Models of Porous Media.- 9.1 Introduction.- 9.2 Parallel Flow Models.- 9.3 Distributed Microstructure Models.- 9.4 A Variational Formulation.- 9.5 Remarks.- 10 Computational Aspects of Dual-Porosity Models.- 10.1 Single-Phase Flow.- 10.2 Two-Phase Flow.- 10.3 Some Computational Results.- A Mathematical Approaches and Methods.- A.1.1 F-Convergence.- A.1.2 G-Convergence.- A.1.3 H-Convergence.- A.2 The Energy Method.- A.2.1 Setting of a Model Problem.- A.2.2 Proof of the Results.- A.3 Two-Scale Convergence.- A.3.1 A Brief Presentation.- A.3.2 Statement of the Principal Results.- A.3.3 Application to a Model Problem.- A.4 Iterated Homogenization.- B Mathematical Symbols and Definitions.- B.1 List of Symbols.- B.2 Function Spaces.- B.2.1 Macroscopic Function Spaces.- B.2.2 Micro-and Mesoscopic Function Spaces.- B.2.3 Two-Scale Function Spaces.- B.2.4 Time-Dependent Function Spaces.- C References.