How to Think about Algorithms
Autor Jeff Edmondsen Limba Engleză Paperback – 30 dec 2023
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 204.65 lei 3-5 săpt. | +39.77 lei 4-10 zile |
Cambridge University Press – 30 dec 2023 | 204.65 lei 3-5 săpt. | +39.77 lei 4-10 zile |
Cambridge University Press – 18 mai 2008 | 377.51 lei 38-44 zile | |
Hardback (1) | 846.75 lei 6-8 săpt. | |
Cambridge University Press – 30 dec 2023 | 846.75 lei 6-8 săpt. |
Preț: 204.65 lei
Preț vechi: 255.81 lei
-20% Nou
Puncte Express: 307
Preț estimativ în valută:
39.19€ • 39.99$ • 32.97£
39.19€ • 39.99$ • 32.97£
Carte disponibilă
Livrare economică 04-18 februarie
Livrare express 18-24 ianuarie pentru 49.76 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009302135
ISBN-10: 1009302132
Pagini: 500
Dimensiuni: 243 x 170 x 36 mm
Greutate: 1.17 kg
Ediția:2
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1009302132
Pagini: 500
Dimensiuni: 243 x 170 x 36 mm
Greutate: 1.17 kg
Ediția:2
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
Preface; Introduction; Part I. Iterative Algorithms and Loop Invariants: 1. Iterative algorithms: measures of progress and loop invariants; 2. Examples using more-of-the-input loop invariant; 3. Abstract data types; 4. Narrowing the search space: binary search; 5. Iterative sorting algorithms; 6. Euclid's GCD algorithm; 7. The loop invariant for lower bounds; 8. Key concepts summary: loop invariants and iterative algorithms; 9. Additional exercises: Part I; 10. Partial solutions to additional exercises: Part I; Part II. Recursion: 11. Abstractions, techniques, and theory; 12. Some simple examples of recursive algorithms; 13. Recursion on trees; 14. Recursive images; 15. Parsing with context-free grammars; 16. Key concepts summary: recursion; 17. Additional exercises: Part II; 18. Partial solutions to additional exercises: Part II; Part III. Optimization Problems: 19. Definition of optimization problems; 20. Graph search algorithms; 21. Network flows and linear programming; 22. Greedy algorithms; 23. Recursive backtracking; 24. Dynamic programming algorithms; 25. Examples of dynamic programming; 26. Reductions and NP-completeness; 27. Randomized algorithms; 28. Key concepts summary: greedy algorithms and dynamic programmings; 29. Additional exercises: Part III; 30. Partial solutions to additional exercises: Part III; Part IV. Additional Topics: 31. Existential and universal quantifiers; 32. Time complexity; 33. Logarithms and exponentials; 34. Asymptotic growth; 35. Adding-made-easy approximations; 36. Recurrence relations; 37. A formal proof of correctness; 38. Additional exercises: Part IV; 39. Partial solutions to additional exercises: Part IV; Exercise Solutions; Conclusion; Index.
Descriere
Exceptionally student-friendly, now with over 150 new exercises, key concept summaries, and a new chapter on machine learning algorithms.
Recenzii
'Reading this is like sitting at the feet of the master: it leads an apprentice from knowing how to program to understanding deep principles of algorithms.' Harold Thimbleby, The Times Higher Education Supplement
'… a great book to learn how to design and create new algorithms … a good book that the reader will appreciate in the first and subsequent reads, and it will make better developers and programmers.' Journal of Functional Programming
'… a great book to learn how to design and create new algorithms … a good book that the reader will appreciate in the first and subsequent reads, and it will make better developers and programmers.' Journal of Functional Programming