Hypercube Algorithms: with Applications to Image Processing and Pattern Recognition: Bilkent University Lecture Series
Autor Sanjay Ranka, Sartaj Sahnien Limba Engleză Paperback – 14 dec 2011
Preț: 331.74 lei
Preț vechi: 414.67 lei
-20% Nou
Puncte Express: 498
Preț estimativ în valută:
63.49€ • 65.72$ • 53.66£
63.49€ • 65.72$ • 53.66£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461396949
ISBN-10: 1461396948
Pagini: 248
Ilustrații: IX, 237 p.
Dimensiuni: 170 x 244 x 13 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer
Colecția Springer
Seria Bilkent University Lecture Series
Locul publicării:New York, NY, United States
ISBN-10: 1461396948
Pagini: 248
Ilustrații: IX, 237 p.
Dimensiuni: 170 x 244 x 13 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer
Colecția Springer
Seria Bilkent University Lecture Series
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Parallel Architectures.- 1.2 Embedding In A Hypercube.- 1.3 Performance Measures.- 2 Fundamental Operations.- 2.1 Data Broadcasting.- 2.2 Window Broadcast.- 2.3 Data Sum.- 2.4 Prefix Sum.- 2.5 Shift.- 2.6 Data Circulation.- 2.7 Even, Odd, And All Shifts.- 2.8 Consecutive Sum.- 2.9 Adjacent Sum.- 2.10 Data Accumulation.- 2.11 Rank.- 2.12 Concentrate.- 2.13 Distribute.- 2.14 Generalize.- 2.15 Sorting.- 2.16 Random Access Read.- 2.17 Random Access Write.- 2.18 BPC Permutations.- 2.19 Summary.- 3 SIMD Matrix Multiplication.- 3.1 n3 Processors.- 3.2 n2 Processors.- 3.3 n2r, 1? r ? n Processors.- 3.4 r2, 1? r ? n Processors.- 3.5 Summary.- 4 One Dimensional Convolution.- 4.1 The Problem.- 4.2 O(M) Memory Algorithms.- 4.3 O(1) Memory MIMD Algorithm.- 4.4 O(l) Memory SIMD Algorithm.- 5 Template Matching.- 5.1 The Problem.- 5.2 General Square Templates.- 5.3 Kirsch Motivated Templates.- 5.4 Medium Grain Template Matching.- 6 Hough Transform.- 6.1 Introduction.- 6.2 MIMD Algorithm.- 6.3 SIMD Algorithms.- 6.4 NCUBE Algorithms.- 7 Clustering.- 7.1 Introduction.- 7.2 NM Processor Algorithms.- 7.3 Clustering On An NCUBE Hypercube.- 8 Image Transformations.- 8.1 Introduction.- 8.2 Shrinking and Expanding.- 8.3 Translation.- 8.4 Rotation.- 8.5 Scaling.- 9 SIMD String Editing.- 9.1 Introduction.- 9.2 Dynamic Programming Formulation.- 9.3 Shared Memory Parallel Algorithm.- 9.4 SIMD Hypercube Mapping.- References.