Cantitate/Preț
Produs

Image Fusion in Remote Sensing: Conventional and Deep Learning Approaches: Synthesis Lectures on Image, Video, and Multimedia Processing

Autor Arian Azarang, Nasser Kehtarnavaz
en Limba Engleză Paperback – 18 feb 2021
Image fusion in remote sensing or pansharpening involves fusing spatial (panchromatic) and spectral (multispectral) images that are captured by different sensors on satellites. This book addresses image fusion approaches for remote sensing applications. Both conventional and deep learning approaches are covered. First, the conventional approaches to image fusion in remote sensing are discussed. These approaches include component substitution, multi-resolution, and model-based algorithms. Then, the recently developed deep learning approaches involving single-objective and multi-objective loss functions are discussed. Experimental results are provided comparing conventional and deep learning approaches in terms of both low-resolution and full-resolution objective metrics that are commonly used in remote sensing. The book is concluded by stating anticipated future trends in pansharpening or image fusion in remote sensing.
Citește tot Restrânge

Din seria Synthesis Lectures on Image, Video, and Multimedia Processing

Preț: 20684 lei

Nou

Puncte Express: 310

Preț estimativ în valută:
3958 4098$ 3346£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031011283
ISBN-10: 3031011287
Pagini: 81
Ilustrații: XI, 81 p.
Dimensiuni: 191 x 235 mm
Greutate: 0.18 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Image, Video, and Multimedia Processing

Locul publicării:Cham, Switzerland

Cuprins

Preface.- Introduction.- Introduction to Remote Sensing.- Conventional Image Fusion Approaches in Remote Sensing.- Deep Learning-Based Image Fusion Approaches in Remote Sensing.- Unsupervised Generative Model for Pansharpening.- Experimental Studies.- Anticipated Future Trend.- Authors' Biographies.- Index.

Notă biografică

Arian Azarang received the BS degree and the first rank award from Shiraz University, Iran, in 2015, and the MS degree in electrical engineering from Tarbiat Modares University, Iran, in 2017. He received his Ph.D. degree in electrical engineering from the University of Texas at Dallas in 2021. He was recognized as the Honorable Mention of the David Daniel Thesis Award for the Erik Jonsson School of Engineering and Computer Science at the University of Texas at Dallas. He is currently working as a Postdoctoral Research Associate at the University of North Carolina at Chapel Hill. His research interests include signal and image processing, applied deep learning, and speech recognition and enhancement. He has thus far authored or co-authored 21 scholarly publications in these areas. He has recently become an Associate Editor of the Springer journal Signal, Image and Video Processing.

Nasser Kehtarnavaz
is an Erik Jonsson Distinguished Professor with the Department ofElectrical and Computer Engineering and the Director of the Embedded Machine Learning Laboratory at the University of Texas at Dallas. His research interests include signal and image processing, machine/deep learning, and real-time implementation on embedded processors. He has authored or co-authored 10 books and more than 400 journal papers, conference papers, patents, manuals, and editorials in these areas. He is a Fellow of IEEE, a Fellow of SPIE, and a Licensed Professional Engineer. He is currently serving as Editor-in-Chief of Journal of Real Time Image Processing.