Cantitate/Preț
Produs

Imaging and Manipulating Molecular Orbitals: Proceedings of the 3rd AtMol International Workshop, Berlin 24-25 September 2012: Advances in Atom and Single Molecule Machines

Editat de Leonhard Grill, Christian Joachim
en Limba Engleză Paperback – 27 aug 2016
Imaging and Manipulating Molecular Orbitals celebrates the 60th anniversary of the first image of a single molecule by E. Müller. This book summarizes the advances in the field from various groups around the world who use a broad range of experimental techniques: scanning probe microscopy (STM and AFM), field emission microscopy, transmission electron microscopy, attosecond tomography and photoemission spectroscopy. The book is aimed at those who are interested in the field of molecular orbital imaging and manipulation. Included in the book are a variety of experimental techniques in combination with theoretical approaches which describe the spatial distribution and energies of the molecular orbitals. The goal is to provide the reader with an up-to-date summary on the latest developments in this field from various points of view.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92484 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 27 aug 2016 92484 lei  6-8 săpt.
Hardback (1) 92905 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 16 sep 2013 92905 lei  6-8 săpt.

Din seria Advances in Atom and Single Molecule Machines

Preț: 92484 lei

Preț vechi: 112786 lei
-18% Nou

Puncte Express: 1387

Preț estimativ în valută:
17709 18267$ 14677£

Carte tipărită la comandă

Livrare economică 20 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662512784
ISBN-10: 3662512785
Pagini: 214
Ilustrații: VIII, 206 p. 97 illus., 84 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Advances in Atom and Single Molecule Machines

Locul publicării:Berlin, Heidelberg, Germany

Cuprins

Observations of individual Cu-Phthalocyanine molecules deposited on nano-tips in the field emission microscope.- High voltage STM imaging of single Copper.- Motional Analysis of A Single Organic Molecule Using Nano Carbon Materials: Scope of Atomic Level Imaging and Spectroscopy.- Imaging orbitals by ionization or electron attachment: the role of Dyson orbitals.- Mapping the electronic resonances of single molecule STM tunnel junction.- Manipulation and spectroscopy of individual phthalocyanine molecules on InAs(111)A with a low-temperature scanning tunneling microscope.- Electronic Structure and Properties of Graphene Nanoribbons: zigzag and armchair edges.- Imaging and manipulation of molecular electronic states on metal surfaces with scanning tunneling microscopy.- SPM imaging of trinaphthylene molecular states on a hydrogen passivated Ge(001) surface.- STM Theory and image interpretation.- Simulations of constant current STM images of open-shell systems.- Electronic transmission through a single impurity in a multi-configuration scattering matrix approach.- Electron transport through a molecular junction using a multiconfigurational description.- Visualizing Electron Correlation in Molecules Using a Scanning Tunneling Microscope: Theory and Ab-Initio Prediction.- Submolecular Resolution Imaging of C60: From Orbital Density to Bond Order.

Notă biografică

Leonhard Grill completed his PhD in experimental physics in Italy and Austria in 2001 and currently leads the research group “Nanoscale Science” in the department of Physical Chemistry at the Fritz-Haber-Institute of the Max-Planck-Society in Berlin. He is also adjunct reader (Privatdozent) at the Physics Department of the Free University Berlin. Grill is the author of more than 50 publications and received the “Young Leaders in Science” scholarship from the Schering Foundation (2010-2011) and the Feynman Prize in Nanotechnology (2011). His research focuses on the imaging and manipulation of matter on surfaces using scanning probe microscopy, in particular molecules that carry a specific mechanical, optical, electronic or electrical function.

Christian Joachim is “Exceptional Class” CNRS Director of Research, in the nanoscience group at CEMES/CNRS (www.cemes.fr/GNS/) and adjunct Professor of Quantum Physics at Sup’Aero (ISAE) Toulouse. In Singapore, he is A*STAR VIP at IMRE for atom technology and head of the WPI MANA-NIMS satellite in Toulouse. He has coordinated European projects like "Bottom-up Nanomachines" and “Pico-Inside” and is currently coordinating the large European integrated project AtMol (www.atmol.eu) (2011-2014) to construct the first ever molecular chip. He is the author of more than 200 scientific publications (h=49) and has presented over 300 invited talks on electron transfer through a molecule, STM and Atomic Force Microscopy (AFM) image calculations, tunnel transport through a molecule, molecular devices, nanolithography and single molecule machines. He received the CNRS Silver Medal in 2001 and the Feynman Prize in Nanotechnology in 1997 and 2005. Christian Joachim is Series Editor of "Advances in Atom and Single Molecule Machines".

Textul de pe ultima copertă

Imaging and Manipulating Molecular Orbitals celebrates the 60th anniversary of the first image of a single molecule by E. Müller. This book summarizes the advances in the field from various groups around the world who use a broad range of experimental techniques: scanning probe microscopy (STM and AFM), field emission microscopy, transmission electron microscopy, attosecond tomography and photoemission spectroscopy. The book is aimed at those who are interested in the field of molecular orbital imaging and manipulation. Included in the book are a variety of experimental techniques in combination with theoretical approaches which describe the spatial distribution and energies of the molecular orbitals. The goal is to provide the reader with an up-to-date summary on the latest developments in this field from various points of view.

Caracteristici

Provides an overview of the state-of-the art and the latest developments in the imaging of molecular orbitals Covers a wide range of complementary experimental techniques, in reciprocal and real space, in combination with theoretical approaches Discusses the influence of molecular orbitals and their manipulation on molecular physical and chemical properties Includes supplementary material: sn.pub/extras