Infinite-Dimensional Optimization and Convexity: Chicago Lectures in Mathematics
Autor Ivar Ekeland, Thomas Turnbullen Limba Engleză Paperback – 31 aug 1983
In this volume, Ekeland and Turnbull are mainly concerned with existence theory. They seek to determine whether, when given an optimization problem consisting of minimizing a functional over some feasible set, an optimal solution—a minimizer—may be found.
Din seria Chicago Lectures in Mathematics
- 8% Preț: 463.42 lei
- Preț: 281.14 lei
- Preț: 214.68 lei
- Preț: 227.15 lei
- Preț: 384.89 lei
- Preț: 374.70 lei
- Preț: 260.52 lei
- 27% Preț: 858.13 lei
- Preț: 311.17 lei
- Preț: 290.55 lei
- Preț: 331.00 lei
- Preț: 252.55 lei
- Preț: 259.37 lei
- Preț: 375.29 lei
- 15% Preț: 193.91 lei
- 20% Preț: 159.55 lei
- 14% Preț: 299.04 lei
- 31% Preț: 120.47 lei
Preț: 279.93 lei
Nou
Puncte Express: 420
Preț estimativ în valută:
53.57€ • 55.27$ • 45.34£
53.57€ • 55.27$ • 45.34£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780226199887
ISBN-10: 0226199886
Pagini: 174
Dimensiuni: 133 x 203 x 15 mm
Greutate: 0.16 kg
Editura: University of Chicago Press
Colecția University of Chicago Press
Seria Chicago Lectures in Mathematics
ISBN-10: 0226199886
Pagini: 174
Dimensiuni: 133 x 203 x 15 mm
Greutate: 0.16 kg
Editura: University of Chicago Press
Colecția University of Chicago Press
Seria Chicago Lectures in Mathematics
Notă biografică
Ivar Ekeland is professor of mathematics at the University of Paris-Dauphine. Thomas Turnbull is a student in the Graduate School of Business at the University of Chicago.
Cuprins
Foreword
Chapter I - The Caratheodory Approach
1. Optimal Control Problems
2. Hamiltonian Systems
Chapter II - Infinite-dimensional Optimization
1. The Variational Principle
2. Strongly Continuous Functions on LP-spaces
3. Smooth Optimization in L2
4. Weak Topologies
5. Existence Theory for the Calculus of Variations
Chapter III - Duality Theory
1. Convex Analysis
2. Subdifferentiability
3. Necessary Conditions and Duality Theory
4. Non-convex Duality Theory
5. Applications of Duality to the Calculus of Variations
6. Relaxation Theory
Notes
References
Chapter I - The Caratheodory Approach
1. Optimal Control Problems
2. Hamiltonian Systems
Chapter II - Infinite-dimensional Optimization
1. The Variational Principle
2. Strongly Continuous Functions on LP-spaces
3. Smooth Optimization in L2
4. Weak Topologies
5. Existence Theory for the Calculus of Variations
Chapter III - Duality Theory
1. Convex Analysis
2. Subdifferentiability
3. Necessary Conditions and Duality Theory
4. Non-convex Duality Theory
5. Applications of Duality to the Calculus of Variations
6. Relaxation Theory
Notes
References