Navier-Stokes Equations: Chicago Lectures in Mathematics
Autor Peter Constantin, Ciprian Foiasen Limba Engleză Paperback – 27 iul 1989
Both an original contribution and a lucid introduction to mathematical aspects of fluid mechanics, Navier-Stokes Equations provides a compact and self-contained course on these classical, nonlinear, partial differential equations, which are used to describe and analyze fluid dynamics and the flow of gases.
Din seria Chicago Lectures in Mathematics
- 8% Preț: 463.42 lei
- Preț: 281.14 lei
- Preț: 214.68 lei
- Preț: 227.15 lei
- Preț: 279.93 lei
- Preț: 384.89 lei
- Preț: 374.70 lei
- Preț: 260.52 lei
- 27% Preț: 858.13 lei
- Preț: 311.17 lei
- Preț: 290.55 lei
- Preț: 331.00 lei
- Preț: 252.55 lei
- Preț: 375.29 lei
- 15% Preț: 193.91 lei
- 20% Preț: 159.55 lei
- 14% Preț: 299.04 lei
- 31% Preț: 120.47 lei
Preț: 259.37 lei
Nou
Puncte Express: 389
Preț estimativ în valută:
49.64€ • 51.21$ • 42.01£
49.64€ • 51.21$ • 42.01£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780226115498
ISBN-10: 0226115496
Pagini: 200
Ilustrații: x, 190 p.
Dimensiuni: 133 x 203 x 15 mm
Greutate: 0.2 kg
Ediția:1
Editura: University of Chicago Press
Colecția University of Chicago Press
Seria Chicago Lectures in Mathematics
ISBN-10: 0226115496
Pagini: 200
Ilustrații: x, 190 p.
Dimensiuni: 133 x 203 x 15 mm
Greutate: 0.2 kg
Ediția:1
Editura: University of Chicago Press
Colecția University of Chicago Press
Seria Chicago Lectures in Mathematics
Notă biografică
Peter Constantin is professor of mathematics at the University of Chicago. Ciprian Foias is Distinguished Professor in Mathematics at Indiana University.
Cuprins
Introduction
1. Notation and Preliminary Material
2. The Stokes equations. Existence and Uniqueness of Weak Solutions
3. Regularity of Solutions of the Stokes Equations
4. The Stokes Operator
5. The Navier-Stokes Equations
6. Inequalities for the Nonlinear Term
7. Stationary solutions to the Navier-Stokes Equations
8. Weak Solutions of the Navier-Stokes Equation
9. Strong Solutions
10. Further Results Concerning Weak and Strong Solutions
11. Vanishing Viscosity Limits
12. Analyticity and Backward Uniqueness
13. Exponential Decay of Volume Elements
14. Global Lyapunov Exponents. Hausdorff and Fractal Dimension of the Universal Attractor
15. Inertial Manifolds
Bibliography
Index
1. Notation and Preliminary Material
2. The Stokes equations. Existence and Uniqueness of Weak Solutions
3. Regularity of Solutions of the Stokes Equations
4. The Stokes Operator
5. The Navier-Stokes Equations
6. Inequalities for the Nonlinear Term
7. Stationary solutions to the Navier-Stokes Equations
8. Weak Solutions of the Navier-Stokes Equation
9. Strong Solutions
10. Further Results Concerning Weak and Strong Solutions
11. Vanishing Viscosity Limits
12. Analyticity and Backward Uniqueness
13. Exponential Decay of Volume Elements
14. Global Lyapunov Exponents. Hausdorff and Fractal Dimension of the Universal Attractor
15. Inertial Manifolds
Bibliography
Index