Cantitate/Preț
Produs

Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics: The Springer International Series in Engineering and Computer Science, cartea 757

Autor Bon K. Sy, Arjun K. Gupta
en Limba Engleză Hardback – 30 noi 2003
Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is written to introduce basic concepts, advanced research techniques, and practical solutions of data warehousing and data mining for hosting large data sets and EDA. This book is unique because it is one of the few in the forefront that attempts to bridge statistics and information theory through a concept of patterns.
Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science and engineering.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92632 lei  6-8 săpt.
  Springer Us – 4 oct 2012 92632 lei  6-8 săpt.
Hardback (1) 93388 lei  6-8 săpt.
  Springer Us – 30 noi 2003 93388 lei  6-8 săpt.

Din seria The Springer International Series in Engineering and Computer Science

Preț: 93388 lei

Preț vechi: 113888 lei
-18% Nou

Puncte Express: 1401

Preț estimativ în valută:
17874 18579$ 14806£

Carte tipărită la comandă

Livrare economică 04-18 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402076503
ISBN-10: 1402076509
Pagini: 316
Ilustrații: XXII, 289 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.67 kg
Ediția:2004
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Preview: Data Warehousing/Mining.- 1. What is Summary Information?.- 2. Data, Information Theory, Statistics.- 3. Data Warehousing/Mining Management.- 4. Architecture, Tools and Applications.- 5. Conceptual/Practical Mining Tools.- 6. Conclusion.- 2. Data Warehouse Basics.- 1. Methodology.- 2. Conclusion.- 3. CONCEPT OF PATTERNS & VISUALIZATION.- 1. Introduction.- Appendix: Word Problem Solution.- 4. Information Theory & Statistics.- 1. Introduction.- 2. Information Theory.- 3. Variable Interdependence Measure.- 4. Probability Model Comparison.- 5. Pearson’s Chi-Square Statistic.- 5. Information and Statistics Linkage.- 1. Statistics.- 2. Concept Of Information.- 3. Information Theory And Statistics.- 4. Conclusion.- 6. Temporal-Spatial Data.- 1. Introduction.- 2. Temporal-Spatial Characteristics.- 3. Temporal-Spatial Data Analysis.- 4. Problem Formulation.- 5. Temperature Analysis Application.- 6. Discussion.- 7. Conclusion.- 7. Change Point Detection Techniques.- 1. Change Point Problem.- 2. Information Criterion Approach.- 3. Binary Segmentation Technique.- 4. Example.- 5. Summary.- 8. Statistical Association Patterns.- 1. Information-Statistical Association.- 2. Conclusion.- 9. Pattern Inference & Model Discovery.- 1. Introduction.- 2. Concept Of Pattern-Based Inference.- 3. Conclusion.- Appendix: Pattern Utility Illustration.- 10. Bayesian Nets & Model Generation.- 1. Preliminary Of Bayesian Networks.- 2. Pattern Synthesis for Model Learning.- 3. Conclusion.- 11. Pattern Ordering Inference: Part I.- 1. Pattern Order Inference Approach.- 2. Bayesian Net Probability Distribution.- 3. Bayesian Model: Pattern Embodiment.- 4. RLCM for Pattern Ordering.- 12. Pattern Ordering Inference: Part II.- 1. Ordering General Event Patterns.- 2. Conclusion.- Appendix I: 51Largest PR(ADHJBCEF % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBqj3BWbIqubWexLMBb50ujbqegm0B% 1jxALjharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr% Ffpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0F% irpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaa% GcbaWaa0aaaeaacaWGhbaaamaamaaabaGaamysaaaaaaa!3B22!$$ \overline G \underline I $$.- Appendix II: Ordering of PR(LI/SE). SE=F G I.- Appendix III.A: Evaluation of Method A.- Appendix III.B: Evaluation of Method B.- Appendix III.C: Evaluation of Method C.- 13. Case Study 1: Oracle Data Warehouse.- 1. Introduction.- 2. Background.- 3. Challenge.- 4. Illustrations.- 5. Conclusion.- Appendix I: Warehouse Data Dictionary.- 14. Case Study 2: Financial Data Analysis.- 1. The Data.- 2. Information Theoretic Approach.- 3. Data Analysis.- 4. Conclusion.- 15. Case Study 3: Forest Classification.- 1. Introduction.- 2. Classifier Model Derivation.- 3. Test Data Characteristics.- 4. Experimental Platform.- 5. Classification Results.- 6. Validation Stage.- 7. Effect of Mixed Data on Performance.- 8. Goodness Measure for Evaluation.- 9. Conclusion.- References.