Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics: The Springer International Series in Engineering and Computer Science, cartea 757
Autor Bon K. Sy, Arjun K. Guptaen Limba Engleză Hardback – 30 noi 2003
Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science and engineering.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 926.32 lei 6-8 săpt. | |
Springer Us – 4 oct 2012 | 926.32 lei 6-8 săpt. | |
Hardback (1) | 933.88 lei 6-8 săpt. | |
Springer Us – 30 noi 2003 | 933.88 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- Preț: 119.98 lei
- 24% Preț: 1041.97 lei
- 20% Preț: 422.81 lei
- Preț: 206.36 lei
- 20% Preț: 313.26 lei
- 20% Preț: 630.47 lei
- 23% Preț: 708.06 lei
- 18% Preț: 1200.75 lei
- 18% Preț: 945.46 lei
- 20% Preț: 633.05 lei
- 18% Preț: 929.55 lei
- 20% Preț: 633.55 lei
- 15% Preț: 624.57 lei
- 20% Preț: 630.80 lei
- 18% Preț: 930.00 lei
- 20% Preț: 631.45 lei
- 20% Preț: 974.74 lei
- 20% Preț: 632.91 lei
- 18% Preț: 927.68 lei
- 20% Preț: 975.39 lei
- 18% Preț: 937.60 lei
- 20% Preț: 631.93 lei
- 15% Preț: 636.39 lei
- 18% Preț: 930.96 lei
- 18% Preț: 1196.59 lei
- 18% Preț: 938.22 lei
- 15% Preț: 630.97 lei
- 18% Preț: 929.24 lei
- 18% Preț: 928.16 lei
- 20% Preț: 1258.58 lei
Preț: 933.88 lei
Preț vechi: 1138.88 lei
-18% Nou
Puncte Express: 1401
Preț estimativ în valută:
178.74€ • 185.79$ • 148.06£
178.74€ • 185.79$ • 148.06£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781402076503
ISBN-10: 1402076509
Pagini: 316
Ilustrații: XXII, 289 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.67 kg
Ediția:2004
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 1402076509
Pagini: 316
Ilustrații: XXII, 289 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.67 kg
Ediția:2004
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Preview: Data Warehousing/Mining.- 1. What is Summary Information?.- 2. Data, Information Theory, Statistics.- 3. Data Warehousing/Mining Management.- 4. Architecture, Tools and Applications.- 5. Conceptual/Practical Mining Tools.- 6. Conclusion.- 2. Data Warehouse Basics.- 1. Methodology.- 2. Conclusion.- 3. CONCEPT OF PATTERNS & VISUALIZATION.- 1. Introduction.- Appendix: Word Problem Solution.- 4. Information Theory & Statistics.- 1. Introduction.- 2. Information Theory.- 3. Variable Interdependence Measure.- 4. Probability Model Comparison.- 5. Pearson’s Chi-Square Statistic.- 5. Information and Statistics Linkage.- 1. Statistics.- 2. Concept Of Information.- 3. Information Theory And Statistics.- 4. Conclusion.- 6. Temporal-Spatial Data.- 1. Introduction.- 2. Temporal-Spatial Characteristics.- 3. Temporal-Spatial Data Analysis.- 4. Problem Formulation.- 5. Temperature Analysis Application.- 6. Discussion.- 7. Conclusion.- 7. Change Point Detection Techniques.- 1. Change Point Problem.- 2. Information Criterion Approach.- 3. Binary Segmentation Technique.- 4. Example.- 5. Summary.- 8. Statistical Association Patterns.- 1. Information-Statistical Association.- 2. Conclusion.- 9. Pattern Inference & Model Discovery.- 1. Introduction.- 2. Concept Of Pattern-Based Inference.- 3. Conclusion.- Appendix: Pattern Utility Illustration.- 10. Bayesian Nets & Model Generation.- 1. Preliminary Of Bayesian Networks.- 2. Pattern Synthesis for Model Learning.- 3. Conclusion.- 11. Pattern Ordering Inference: Part I.- 1. Pattern Order Inference Approach.- 2. Bayesian Net Probability Distribution.- 3. Bayesian Model: Pattern Embodiment.- 4. RLCM for Pattern Ordering.- 12. Pattern Ordering Inference: Part II.- 1. Ordering General Event Patterns.- 2. Conclusion.- Appendix I: 51Largest PR(ADHJBCEF % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBqj3BWbIqubWexLMBb50ujbqegm0B% 1jxALjharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr% Ffpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0F% irpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaa% GcbaWaa0aaaeaacaWGhbaaamaamaaabaGaamysaaaaaaa!3B22!$$ \overline G \underline I $$.- Appendix II: Ordering of PR(LI/SE). SE=F G I.- Appendix III.A: Evaluation of Method A.- Appendix III.B: Evaluation of Method B.- Appendix III.C: Evaluation of Method C.- 13. Case Study 1: Oracle Data Warehouse.- 1. Introduction.- 2. Background.- 3. Challenge.- 4. Illustrations.- 5. Conclusion.- Appendix I: Warehouse Data Dictionary.- 14. Case Study 2: Financial Data Analysis.- 1. The Data.- 2. Information Theoretic Approach.- 3. Data Analysis.- 4. Conclusion.- 15. Case Study 3: Forest Classification.- 1. Introduction.- 2. Classifier Model Derivation.- 3. Test Data Characteristics.- 4. Experimental Platform.- 5. Classification Results.- 6. Validation Stage.- 7. Effect of Mixed Data on Performance.- 8. Goodness Measure for Evaluation.- 9. Conclusion.- References.