Integral equations—a reference text
Autor Zabreykoen Limba Engleză Hardback – 9 ian 1975
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1384.12 lei 43-57 zile | |
SPRINGER NETHERLANDS – 12 noi 2011 | 1384.12 lei 43-57 zile | |
Hardback (1) | 1394.21 lei 43-57 zile | |
SPRINGER NETHERLANDS – 9 ian 1975 | 1394.21 lei 43-57 zile |
Preț: 1394.21 lei
Preț vechi: 1700.25 lei
-18% Nou
Puncte Express: 2091
Preț estimativ în valută:
266.81€ • 276.87$ • 223.01£
266.81€ • 276.87$ • 223.01£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789028603936
ISBN-10: 902860393X
Pagini: 464
Ilustrații: XIX, 443 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.82 kg
Ediția:1975
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
ISBN-10: 902860393X
Pagini: 464
Ilustrații: XIX, 443 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.82 kg
Ediția:1975
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I General Introduction.- §1 Fredholm and Volterra equations.- §2 Other classes of integral equations.- §3 Some inversion formulas.- II The Fredholm Theory.- §1 Basic concepts and the Fredholm theorems.- §2 The solution of Fredholm equations: The method of successive approximation.- §3 The solution of Fredholm equations: Degenerate equations and the general case.- §4 The Fredholm resolvent.- §5 The solution of Fredholm equations: The Fredholm series.- §6 Equations with a weak singularity.- §7 Systems of integral equations.- §8 The structure of the resolvent in the neighbourhood of a characteristic value.- §9 The rate of growth of eigenvalues.- III Symmetric Equations.- §1 Basic properties.- §2 The Hilbert-Schmidt series and its properties.- §3 The classification of symmetric kernels.- §4 Extremal properties of characteristic values and eigenfunctions.- §5 Schmidt kernels and bilinear series for non-symmetric kernels.- §6 The solution of integral equations of the first kind.- IV Integral Equations with Non-Negative Kernels.- §1 Positive eigenvalues.- §2 Positive solutions of the non-homogeneous equation.- §3 Estimates for the spectral radius.- §4 Oscillating kernels.- V Continuous and Compact Linear Operators.- §1 Continuity and compactness for linear integral operators.- §2 Equations of the second kind. The resolvent of an integral operator.- §3 Equations of the second kind with compact operators in a Banach space.- §4 Equations of the second kind with compact operators in a Hilbert space.- §5 Positive operators.- §6 Volterra equations of the second kind.- §7 Equations of the first kind.- VI One-Dimensional Singular Equations.- §1 Basic notions.- §2 Some properties of singular integrals.- §3 Singular operators in functional spaces.- §4Differentiation and integration formulas involving singular integrals.- §5 Regularization.- §6 Closed contours; symbols; Nöther theorems.- §7 The Carleman method for a closed contour.- §8 Systems of singular equations defined on a closed contour.- §9 The open contour case.- §10 Tricomi and Gellerstedt equations.- §11 Equations with degenerate symbol.- §12 Singular equations in generalized function spaces.- VII The Integral Equations of Mathematical Physics.- §1 The integral equations of potential theory.- §2 The application of complex variable to the problems of potential theory in plane regions.- §3 The biharmonic equation and the plane problem in the theory of elasticity.- §4 Potentials for the heat conduction equation.- §5 The generalized Schwarz algorithm.- §6 Application of the theory of symmetric integral equations.- §7 Certain applications of singular integral equations.- VIII Integral Equations with Convolution Kernels.- §1 General introduction.- §2 Examples.- §3 Equations defined on a semi-infinite interval with summable kernels.- §4 Dual equations with summable kernels and their adjoints.- §5 Examples.- §6 Dual equations with kernels of exponential type.- §7 The Wiener-Hopf method.- §8 Equations with degenerate symbol.- §9 Examples.- §10 Systems of equations on a semi-infinite interval.- §11 Equations defined on a finite interval.- IX Multidimensional Singular Equations.- §1 Basic concepts and theorems.- §2 The symbol.- §3 Singular operators in Lp(Em).- §4 Singular integrals over a manifold.- §5 Regularization and Fredholm theorems.- §6 Systems of singular equations.- §7 Singular equations in Lipschitz spaces.- §8 Singular equations on a cylinder.- §9 Singular equations in spaces of generalized functions.- §10 Equationswith degenerate symbol.- §11 Singular integro-differential equations.- §12 Singular equations on a manifold with boundary.- X Non-Linear Integral Equations.- §1 Non-linear integral operators.- §2 The existence and uniqueness of solutions.- §3 The extension and bifurcation of solutions of non-linear integral equations.- References.