Cantitate/Preț
Produs

Integrated Reconfigurable Manufacturing Systems and Smart Value Chain: Sustainable Infrastructure for the Factory of the Future

Autor M. Reza Abdi, Ashraf W. Labib, Farideh Delavari Edalat, Alireza Abdi
en Limba Engleză Hardback – 10 iun 2018
The book develops manufacturing concepts and applications beyond physical production and towards a wider manufacturing value chain incorporating external stakeholders that include suppliers of raw materials and parts, customers, collaborating manufacturing companies, manufacturing service providers, and environmental organisations. The focal point of the value chain remains as a manufacturing system and its operations whiles flows of parts/materials and information and services across the supply/value chain tiers are taken into account.
The book emphasises on the two innovative paradigms of Reconfigurable Manufacturing Systems (RMS) and the 4th industrial revolution (Industry 4.0) along with their incorporated development. RMS, as a relatively new paradigm, has been introduced to meet the requirements of ‘the factories of the future’, which is aimed by Industry 4.0, though introducing greater responsiveness and customised flexibility into production systems, in which changes in product volumes and types occur regularly. Manufacturing responsiveness can be achieved by RMS through reconfiguring the production facilities according to changing demands of products and new market conditions. The book addresses challenges of mass-customisation and dynamic changes in the supply-chain environment by focusing on developing new techniques related to integrability, scalability and re-configurability at a system level and manufacturing readiness in terms of financial and technical feasibility of RMS. It demonstrate the expected impacts of an RMS design on operational performance and its supply/value chain in the current/future manufacturing environment facing dynamic changes in the internal/external circumstances. In order to establish a circular economy through the RMS value chain, an integrated data-based reconfiguration link is introduced to incorporate information sharing amongst the value chain stakeholders and facilitate grouping products into families with allocation of the product families to the corresponding system configurations with optimal product-process allocation. Decision support systems such as multi criteria decision making tools are developed and applied for the selection of product families and optimising product-process configuration. The proposed models are illustrated through real case studies in applicable manufacturing firms.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 119319 lei  6-8 săpt.
  Springer International Publishing – 7 feb 2019 119319 lei  6-8 săpt.
Hardback (1) 119922 lei  6-8 săpt.
  Springer International Publishing – 10 iun 2018 119922 lei  6-8 săpt.

Preț: 119922 lei

Preț vechi: 146246 lei
-18% Nou

Puncte Express: 1799

Preț estimativ în valută:
22958 23864$ 19035£

Carte tipărită la comandă

Livrare economică 06-20 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319768458
ISBN-10: 331976845X
Pagini: 340
Ilustrații: XXVIII, 289 p. 122 illus., 68 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.63 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Chapter1. Introduction.- Part1. Concept and Application of Adaptive Water Management.- Chapter2. Review of the main water management approaches over the last century.- Chapter3. Conceptual Framework of Adaptive Water Management.- Part2. Water management in Developing countries- an empirical study in the Middle East, Iran.- Chapter4. Water management in developing countries: a case study of Iran.- Part3. The Case Study- Background to Greater Tehran and  Methods of Data Collection.- Chapter5. The case study- background to Greater Tehran.- Chapter6. The Case Study- Methods of Data Collection.- Part4. Data Analysis Methodology- Evaluation of AWM framework.- Chapter7. Data Analysis Methodology.- Chapter8. Evaluation of polycentric governance.- Chapter9. Evaluation of organisational flexibility.- Chapter10. Evaluation of public participation.- Part5. Conclusions and Recommendations.- Chapter11. Review of the objectives regarding AWM adaptation.

Notă biografică

M. Reza Abdi has a background in manufacturing engineering and industrial management, and holds a PhD in manufacturing engineering from University of Manchester Institute of Science and Technology (UMIST), and an M.Phil in manufacturing engineering and Industrial management from Liverpool University. Reza has over 15 years of teaching and industrial experience in various universities and manufacturing companies. His specialist areas are operations management, manufacturing system design, decision support systems, analytical hierarchical process (AHP), analytical network process (ANP), information systems, environment management, computer modelling, systems dynamics, simulation and fuzzy logic. He has published various articles and five book chapters in the areas of operations and information management, and been a chair person and a member of program committees of a number of international conferences in the area of operations and information management, and environment management. He has been a principal member of the Course Approval and Review Team (CART) at Bradford University.
Ashraf Labib is Professor of Operations and Decision Analysis at Portsmouth Business School. He has also been the Associate Dean (Research) of the Business School and Director of the DBA Programme. His main research interest lies in the field of Strategic Operations Management and Decision Analysis. This includes Manufacturing, Reliability Engineering and Maintenance Systems, Multiple Criteria Decision-Analysis and Applications of Artificial Intelligence such as Fuzzy Logic. Prior to joining Portsmouth Business School, he was a Senior Lecturer in the Manufacturing Division of the Department of Mechanical, Aerospace and Manufacturing Engineering at UMIST (University of Manchester Institute of Science and Technology). He holds a PhD and MSc from Univ. of Birmingham, an MBA from the American University in Cairo, and a BSc in Mechanical Engineering from Univ. of Cairo. He has published 120-refereed papers in professional journals and international conferences proceedings. He has been active in attracting research-funded projects from EPSRC, ESRC, European Commission and industry. He  has also been involved in teaching modules to various industries such as the EDF, HP, Royal Mail, Qatar Gas, SABEC, and University of Manchester, and Glasgow Caledonian, and the NSF funded research centre IMS in the USA. He has been involved in the design, development, and implementation of Computerised Maintenance Management Systems (CMMSs), Stock Control Spares and Ordering Systems for major companies in the automotive sector such as Land Rover, Rockwell, Peugeot Talbot and Federal Mogul - Ferodo.
Farideh Delavari-Edalat has degrees including B.Sc. and M.Sc. and Ph.D., all related to the life sciences and environment management. She has over 15 years of experiences in industrial consultancy and academia through working in the areas related to the environment/water management. She received her Ph.D., in the area of adaptive environment management, focusing on aid to achieve a sustainable environment. She has published a number of papers in the areas of environment and water management in international peer reviewed journals and international conference proceedings. She has conducted various case studies and undertaken questionnaire designs, data collection including both quantitative and qualitative data using a variety of analytical methods and software packages for modelling and data analysis, and running behavioral experiments such as public water consumption behavior in developing countries and people attitude towards trees in urban areas in UK.
Alireza Abdi is a Research Engineer for Manufacturing Technology Centre. He is involved in research in the areas of powder bed additive manufacturing, design for additive manufacturing and design simulation and optimization for aerospace, automotive and energy components.

Textul de pe ultima copertă

The book develops manufacturing concepts and applications beyond physical production and towards a wider manufacturing value chain incorporating external stakeholders that include suppliers of raw materials and parts, customers, collaborating manufacturing companies, manufacturing service providers, and environmental organisations. The focal point of the value chain remains as a manufacturing system and its operations whiles flows of parts/materials and information and services across the supply/value chain tiers are taken into account.
The book emphasises on the two innovative paradigms of Reconfigurable Manufacturing Systems (RMS) and the 4th industrial revolution (Industry 4.0) along with their incorporated development. RMS, as a relatively new paradigm, has been introduced to meet the requirements of ‘the factories of the future’, which is aimed by Industry 4.0, though introducing greater responsiveness and customised flexibility into production systems, in which changes in product volumes and types occur regularly. Manufacturing responsiveness can be achieved by RMS through reconfiguring the production facilities according to changing demands of products and new market conditions. The book addresses challenges of mass-customisation and dynamic changes in the supply-chain environment by focusing on developing new techniques related to integrability, scalability and re-configurability at a system level and manufacturing readiness in terms of financial and technical feasibility of RMS. It demonstrate the expected impacts of an RMS design on operational performance and its supply/value chain in the current/future manufacturing environment facing dynamic changes in the internal/external circumstances. In order to establish a circular economy through the RMS value chain, an integrated data-based reconfiguration link is introduced to incorporate information sharing amongst the value chain stakeholders and facilitate grouping products into families with allocation of the product families to the corresponding system configurations with optimal product-process allocation. Decision support systems such as multi criteria decision making tools are developed and applied for the selection of product families and optimising product-process configuration. The proposed models are illustrated through real case studies in applicable manufacturing firms.

Caracteristici

Presents a new integrated strategy of supply chain incorporating an RMS
Demonstrates how manufacturing facilities need to be (re)arranged for producing the product families according to their operational requirements at any production stage
Develops a reverse supply chain incorporating a circular economy required for a sustainable RMS value chain with efficient usage of resources