Integrodifferential Equations and Delay Models in Population Dynamics: Lecture Notes in Biomathematics, cartea 20
Autor J. M. Cushingen Limba Engleză Paperback – oct 1977
Din seria Lecture Notes in Biomathematics
- Preț: 211.24 lei
- Preț: 372.21 lei
- Preț: 374.09 lei
- Preț: 384.10 lei
- Preț: 389.60 lei
- Preț: 380.89 lei
- Preț: 378.64 lei
- 5% Preț: 360.41 lei
- Preț: 378.25 lei
- Preț: 381.63 lei
- Preț: 387.69 lei
- 5% Preț: 383.40 lei
- 5% Preț: 364.54 lei
- Preț: 381.48 lei
- Preț: 397.53 lei
- Preț: 385.06 lei
- Preț: 378.05 lei
- Preț: 378.05 lei
- Preț: 377.30 lei
- Preț: 373.35 lei
- Preț: 377.69 lei
- Preț: 398.86 lei
- Preț: 373.13 lei
- Preț: 393.94 lei
- Preț: 378.80 lei
- Preț: 383.72 lei
- Preț: 388.86 lei
- Preț: 372.37 lei
- Preț: 376.55 lei
- 15% Preț: 568.30 lei
- Preț: 374.46 lei
- Preț: 398.86 lei
- Preț: 392.44 lei
- Preț: 403.79 lei
- Preț: 379.18 lei
- 5% Preț: 364.90 lei
- Preț: 372.37 lei
- Preț: 380.52 lei
- Preț: 394.89 lei
- Preț: 344.45 lei
- Preț: 376.93 lei
- Preț: 401.70 lei
- Preț: 391.85 lei
- Preț: 392.98 lei
- Preț: 385.22 lei
- Preț: 378.43 lei
- Preț: 394.89 lei
- Preț: 386.01 lei
- Preț: 399.24 lei
Preț: 378.43 lei
Nou
Puncte Express: 568
Preț estimativ în valută:
72.46€ • 74.75$ • 60.06£
72.46€ • 74.75$ • 60.06£
Carte tipărită la comandă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540084495
ISBN-10: 3540084495
Pagini: 208
Ilustrații: VI, 198 p.
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540084495
Pagini: 208
Ilustrații: VI, 198 p.
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1: Introductory Remarks.- 2: Some Preliminary Remarks on Stability.- 2.1 Linearization.- 2.2 Autonomous Linear Systems.- 3: Stability and Delay Models for a Single Species.- 3.1 Delay Logistic Equations.- 3.2 The Logistic Equation with a Constant Time Lag.- 3. 3 Some Other Models.- 3.4 Some General Results.- 3.5 A General Instability Result.- 3.6 The Stabilizing Effect of Delays.- 4: Stability and Multi-Species Interactions with Delays.- 4.1 Volterra’s Predator-Prey Model with Delays.- 4. 2 Predator-Prey Models with Density Terms.- 4.3 Predator-Prey Models with Response Delays to Resource Limitation.- 4.4 Stability and Vegetation-Herbivore-Carnivore Systems.- 4.5 Some Other Delay Predator-Prey Models.- 4.6 The Stabilization of Predator-Prey Interactions.- 4.7 A General Predator-Prey Model.- 4.8 Competition and Mutualism.- 4.9 Stability and Instability of n-Species Models.- 4.10 Delays Can Stabilize an Otherwise Unstable Equilibrium.- 5: Oscillations and Single Species Models with Delays.- 5.1 Single Species Models and Large Delays.- 5.2 Bifurcation of Periodic Solutions of the Delay Logistic.- 5.3 Other Results on Nonconstant Periodic Solutions.- 5.4 Periodically Fluctuating Environments.- 6: Oscillations and Multi-Species Interactions with Delays.- 6.1 A General Bifurcation Theoren.- 6.2 Periodic Oscillations Due to Delays in Predator-Prey Interactions..- 6.3 Numerically Integrated Examples of Predator-Prey Models with Delays.- 6.4 Oscillations and Predator-Prey Models with Delays.- 6.5 Two Species Competition Models with Linear Response Functionals.- 6.6 Two Species Mutualism Models with Linear Response Functionals.- 6.7 Delays in Systems with More than Two Interacting Species.- 6.8 Periodically Fluctuating Environments.- 7: Some Miscellaneous Topics.- References.