Stochastic Models for Spike Trains of Single Neurons: Lecture Notes in Biomathematics, cartea 16
Autor S. K. Srinivasan, Gopalan Sampathen Limba Engleză Paperback – aug 1977
Din seria Lecture Notes in Biomathematics
- Preț: 211.23 lei
- Preț: 367.77 lei
- Preț: 369.64 lei
- Preț: 379.51 lei
- Preț: 384.95 lei
- Preț: 376.34 lei
- Preț: 374.13 lei
- 5% Preț: 356.13 lei
- Preț: 377.09 lei
- Preț: 383.06 lei
- 5% Preț: 378.82 lei
- 5% Preț: 360.19 lei
- Preț: 373.92 lei
- Preț: 376.93 lei
- Preț: 392.79 lei
- Preț: 380.47 lei
- Preț: 373.55 lei
- Preț: 373.55 lei
- Preț: 372.80 lei
- Preț: 368.89 lei
- Preț: 373.18 lei
- Preț: 394.12 lei
- Preț: 368.69 lei
- Preț: 389.25 lei
- Preț: 374.28 lei
- Preț: 379.14 lei
- Preț: 384.22 lei
- Preț: 367.95 lei
- Preț: 372.07 lei
- 15% Preț: 561.48 lei
- Preț: 370.01 lei
- Preț: 394.12 lei
- Preț: 387.77 lei
- Preț: 398.97 lei
- Preț: 374.65 lei
- 5% Preț: 360.54 lei
- Preț: 367.95 lei
- Preț: 375.97 lei
- Preț: 390.19 lei
- Preț: 340.35 lei
- Preț: 372.44 lei
- Preț: 396.91 lei
- Preț: 387.19 lei
- Preț: 388.29 lei
- Preț: 380.64 lei
- Preț: 373.92 lei
- Preț: 390.19 lei
- Preț: 381.41 lei
- Preț: 394.49 lei
Preț: 373.76 lei
Nou
Puncte Express: 561
Preț estimativ în valută:
71.54€ • 74.56$ • 59.55£
71.54€ • 74.56$ • 59.55£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540082576
ISBN-10: 3540082573
Pagini: 204
Ilustrații: VIII, 190 p.
Dimensiuni: 170 x 244 x 15 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540082573
Pagini: 204
Ilustrații: VIII, 190 p.
Dimensiuni: 170 x 244 x 15 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Some basic neurophysiology.- 1.1 The neuron.- 1.2 Types of neurons.- 2 Signals in the nervous system.- 2.1 Action potentials as point events — point processes in the nervous system.- 2.2 Spontaneous activity in neurons.- 3 Stochastic modelling of single neuron spike trains.- 3.1 Characteristics of a neuron spike train.- 3.2 The mathematical neuron.- 4 Superposition models.- 4.1 Superposition of renewal processes.- 4.2 Superposition of stationary point processes — limiting behaviour.- 4.3 Superposition models of neuron spike trains.- 4.4 Discussion.- 5 Deletion models.- 5.1 Deletion models with independent interaction of excitatory and inhibitory sequences.- 5.2 Models with dependent interaction of excitatory and inhibitory sequences — Models 5.3 and 5.4.- 5.3 Discussion.- 6 Diffusion models.- 6.1 The diffusion equation.- 6.2 Diffusion models for neuron firing sequences.- 6.3 Discussion.- 7 Counter models.- 7.1 Theory of counters.- 7.2 Counter model extensions of deletion models with independent interaction of e-and i-events.- 7.3 Counter model extensions of deletion models with dependent interaction of e-and i-events.- 7.4 Counter models with threshold behaviour 100 7.4.1 Model 7.6.- 7.5 Discussion.- 8 Discrete state models.- 8.1 Birth and death processes.- 8.2 Models with excitatoiy inputs only.- 8.3 Models with independent interaction of e-events and i-events.- 8.4 Models with dependent interaction of input sequaices.- 8.5 Discussion.- 9 Continuous state models.- 9.1 Cumulative processes.- 9.2 Models with only one input sequence.- 9.3 Models with independent interaction of e-and i-events.- 9.4 Models with dependent interaction of e- and i-events.- 9.5 Discussion.- 10 Real neurons and mathematical models.- 10.1 Decay of the membrane potential.- 10.2Hyperpolarisation of the membrane.- 10.3 Refractoriness and threshold.- 10.4 Spatial summation.- 10.5 Other properties of neurons.- 10.6 The neuron as a black box.- 10.7 Spike trains and renewal processes.- 10.8 Conclusion.- References.