Intelligent Information Processing XII: 13th IFIP TC 12 International Conference, IIP 2024, Shenzhen, China, May 3–6, 2024, Proceedings, Part II: IFIP Advances in Information and Communication Technology, cartea 704
Editat de Zhongzhi Shi, Jim Torresen, Shengxiang Yangen Limba Engleză Hardback – 18 apr 2024
The 49 full papers and 5 short papers presented in these proceedings were carefully reviewed and selected from 58 submissions.
The papers are organized in the following topical sections:
Volume I: Machine Learning; Natural Language Processing; Neural and Evolutionary Computing; Recommendation and Social Computing; Business Intelligence and Risk Control; and Pattern Recognition.
Volume II: Image Understanding.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Hardback (2) | 504.51 lei 38-44 zile | |
Springer Nature Switzerland – 18 apr 2024 | 504.51 lei 38-44 zile | |
Springer Nature Switzerland – 18 apr 2024 | 652.39 lei 6-8 săpt. |
Din seria IFIP Advances in Information and Communication Technology
- 20% Preț: 170.51 lei
- 20% Preț: 615.74 lei
- 20% Preț: 340.32 lei
- Preț: 397.38 lei
- 20% Preț: 336.02 lei
- 20% Preț: 340.98 lei
- 20% Preț: 503.41 lei
- 17% Preț: 523.40 lei
- 20% Preț: 502.06 lei
- 17% Preț: 488.96 lei
- 20% Preț: 501.04 lei
- 20% Preț: 403.20 lei
- 20% Preț: 2194.47 lei
- 15% Preț: 708.83 lei
- 20% Preț: 1162.12 lei
- 20% Preț: 1288.25 lei
- 18% Preț: 1227.21 lei
- 20% Preț: 1282.00 lei
- 18% Preț: 1224.18 lei
- 18% Preț: 953.03 lei
- 18% Preț: 953.20 lei
- 18% Preț: 944.99 lei
- 18% Preț: 948.29 lei
- 15% Preț: 645.47 lei
- 18% Preț: 960.13 lei
- 20% Preț: 1288.11 lei
- 15% Preț: 645.79 lei
- 20% Preț: 1271.10 lei
- 20% Preț: 1922.99 lei
- 20% Preț: 1285.97 lei
- 18% Preț: 956.69 lei
- 18% Preț: 946.72 lei
- 18% Preț: 1224.36 lei
- 20% Preț: 1277.89 lei
- 18% Preț: 953.03 lei
- 18% Preț: 947.98 lei
- 20% Preț: 1292.54 lei
- 18% Preț: 956.18 lei
- 20% Preț: 645.79 lei
- 20% Preț: 1284.47 lei
- 18% Preț: 1235.25 lei
- 20% Preț: 998.70 lei
- 18% Preț: 949.23 lei
- 20% Preț: 1283.81 lei
- 20% Preț: 995.89 lei
- 18% Preț: 1231.01 lei
- 20% Preț: 993.09 lei
- 20% Preț: 1288.94 lei
- 20% Preț: 987.17 lei
Preț: 504.51 lei
Preț vechi: 630.64 lei
-20% Nou
Puncte Express: 757
Preț estimativ în valută:
96.54€ • 101.13$ • 80.01£
96.54€ • 101.13$ • 80.01£
Carte tipărită la comandă
Livrare economică 04-10 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031579189
ISBN-10: 3031579186
Ilustrații: XXX, 207 p. 73 illus., 65 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria IFIP Advances in Information and Communication Technology
Locul publicării:Cham, Switzerland
ISBN-10: 3031579186
Ilustrații: XXX, 207 p. 73 illus., 65 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria IFIP Advances in Information and Communication Technology
Locul publicării:Cham, Switzerland
Cuprins
.- Early Anomaly Detection in Hydraulic Pumps Based on LSTM Traffic Prediction Model.
.- Dynamic Parameter Estimation for Mixtures of Plackett-Luce Models.
.- Recognition of Signal Modulation Pattern Based on Multi-Task Self-Supervised Learning.
.- Dependency-Type Weighted Graph Convolutional Network on End-to-End Aspect-Based Sentiment Analysis.
.- Utilizing Attention for Continuous Human Action Recognition Based on Multimodal Fusion of Visual and Inertial.
.- HARFMR: Human Activity Recognition with Feature Masking and Reconstruction.
.- CAPPIMU: A Composite Activities Dataset for Human Activity Recognition Utilizing Plantar Pressure and IMU Sensors.
.- Open-Set Sensor Human Activity Recognition Based on Reciprocal Time Series.
.- Image Understanding.
.- A Concept-Based Local Interpretable Model-agnostic Explanation Approach for Deep Neural Networks in Image Classification.
.- A Deep Neural Network-based Segmentation Method for Multimodal Brain Tumor Images.
.- Graph Convolutional Networks for Predicting Mechanical Characteristics of 3D Lattice Structures.
.- 3D Object Reconstruction with Deep Learning.
.- Adaptive Prototype Triplet Loss for Cross-Resolution Face Recognition.
.- Hand Gesture Recognition Using a Multi-modal Deep Neural Network.
.- Dynamic Parameter Estimation for Mixtures of Plackett-Luce Models.
.- Recognition of Signal Modulation Pattern Based on Multi-Task Self-Supervised Learning.
.- Dependency-Type Weighted Graph Convolutional Network on End-to-End Aspect-Based Sentiment Analysis.
.- Utilizing Attention for Continuous Human Action Recognition Based on Multimodal Fusion of Visual and Inertial.
.- HARFMR: Human Activity Recognition with Feature Masking and Reconstruction.
.- CAPPIMU: A Composite Activities Dataset for Human Activity Recognition Utilizing Plantar Pressure and IMU Sensors.
.- Open-Set Sensor Human Activity Recognition Based on Reciprocal Time Series.
.- Image Understanding.
.- A Concept-Based Local Interpretable Model-agnostic Explanation Approach for Deep Neural Networks in Image Classification.
.- A Deep Neural Network-based Segmentation Method for Multimodal Brain Tumor Images.
.- Graph Convolutional Networks for Predicting Mechanical Characteristics of 3D Lattice Structures.
.- 3D Object Reconstruction with Deep Learning.
.- Adaptive Prototype Triplet Loss for Cross-Resolution Face Recognition.
.- Hand Gesture Recognition Using a Multi-modal Deep Neural Network.