Cantitate/Preț
Produs

Intermediate Dynamics for Engineers: A Unified Treatment of Newton-Euler and Lagrangian Mechanics

Autor Oliver M. O'Reilly
en Limba Engleză Hardback – 3 aug 2008
This book fits two full-length courses in advanced engineering dynamics. It contains two overlapping tracks. During the first course a Newton-Euler approach is used, followed by a Lagrangian approach. The text includes structured chapter exercises as a study aid. Solutions can be performed in simulation using MATLAB (R) or Mathematica (R).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Hardback (2) 71099 lei  22-36 zile
  Cambridge University Press – 29 ian 2020 71099 lei  22-36 zile
  Cambridge University Press – 3 aug 2008 80627 lei  38-44 zile

Preț: 80627 lei

Preț vechi: 104711 lei
-23% Nou

Puncte Express: 1209

Preț estimativ în valută:
15428 16149$ 12841£

Carte tipărită la comandă

Livrare economică 26 martie-01 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521874830
ISBN-10: 0521874831
Pagini: 408
Ilustrații: 111 b/w illus.
Dimensiuni: 178 x 254 x 24 mm
Greutate: 1 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States

Cuprins

Part I. A Single Particle: 1. Kinematics of a particle; 2. Kinetics of a particle; 3. Lagrange's equations of motion for a single particle; Part II. A System of Particles: 4. Equations of motion for a system of particles; 5. Dynamics of systems of particles; Part III. A Single Rigid Body: 6. Representations of rotations; 7. Kinematics of rigid bodies; 8. Constraints on and potential energies for a rigid body; 9. Kinetics of a rigid body; 10. Lagrange's equations of motion for a single rigid body; Part IV. Systems of Particles and Rigid Bodies: 11. Dynamics of systems of particles and rigid bodies.

Recenzii

'This book is unusual amongst dynamics books in that it treats rotation as an operator, a tensor, which acts on vectors. The more common approach in other books is to treat rotation, indirectly, as a matrix used for a change of coordinates. O'Reilly's rotation-is-a-tensor approach is common in continuum mechanics and is, I think, simply better. It allows direct derivation of the various component formulas without notational tricks.' Andy Ruina, Cornell University

Notă biografică