Cantitate/Preț
Produs

Introduction to Arnold’s Proof of the Kolmogorov–Arnold–Moser Theorem

Autor Achim Feldmeier
en Limba Engleză Paperback – 26 aug 2024
INTRODUCTION TO ARNOLD’S PROOF OF THE KOLMOGOROV–ARNOLD–MOSER THEOREM
This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem. It begins with a general background of the theorem, proves the famous Liouville–Arnold theorem for integrable systems and introduces Kneser’s tori in four-dimensional phase space. It then introduces and discusses the ideas and techniques used in Arnold’s proof, before the second half of the book walks the reader through a detailed account of Arnold’s proof with all the required steps. It will be a useful guide for advanced students of mathematical physics, in addition to researchers and professionals.
Features
• Applies concepts and theorems from real and complex analysis (e.g., Fourier series and implicit function theorem) and topology in the framework of this key theorem from mathematical physics.
• Covers all aspects of Arnold’s proof, including those often left out in more general or simplifi ed presentations.
• Discusses in detail the ideas used in the proof of the KAM theorem and puts them in historical context (e.g., mapping degree from algebraic topology).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 43403 lei  6-8 săpt.
  CRC Press – 26 aug 2024 43403 lei  6-8 săpt.
Hardback (1) 110824 lei  6-8 săpt.
  CRC Press – 8 iul 2022 110824 lei  6-8 săpt.

Preț: 43403 lei

Nou

Puncte Express: 651

Preț estimativ în valută:
8306 8661$ 6903£

Carte tipărită la comandă

Livrare economică 21 martie-04 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032263380
ISBN-10: 1032263385
Pagini: 217
Ilustrații: 74
Dimensiuni: 156 x 234 x 12 mm
Greutate: 0.4 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States

Public țintă

Academic, Postgraduate, Professional, and Undergraduate Advanced

Cuprins

Chapter 1. Hamilton Theory
Chapter 2. Preliminaries
Chapter 3. Outline of the KAM Proof
Chapter 4. Proof of the KAM Theorem
Chapter 5. Analytic Lemmas
Chapter 6. Geometric Lemmas
Chapter 7. Convergence Lemmas
Chapter 8. Arithmetic Lemmas

Notă biografică

Author
Achim Feldmeier is a professor at Universität Potsdam, Germany.

Descriere

This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem.