Introduction to Arnold’s Proof of the Kolmogorov–Arnold–Moser Theorem
Autor Achim Feldmeieren Limba Engleză Paperback – 26 aug 2024
This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem. It begins with a general background of the theorem, proves the famous Liouville–Arnold theorem for integrable systems and introduces Kneser’s tori in four-dimensional phase space. It then introduces and discusses the ideas and techniques used in Arnold’s proof, before the second half of the book walks the reader through a detailed account of Arnold’s proof with all the required steps. It will be a useful guide for advanced students of mathematical physics, in addition to researchers and professionals.
Features
• Applies concepts and theorems from real and complex analysis (e.g., Fourier series and implicit function theorem) and topology in the framework of this key theorem from mathematical physics.
• Covers all aspects of Arnold’s proof, including those often left out in more general or simplifi ed presentations.
• Discusses in detail the ideas used in the proof of the KAM theorem and puts them in historical context (e.g., mapping degree from algebraic topology).
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 434.03 lei 6-8 săpt. | |
CRC Press – 26 aug 2024 | 434.03 lei 6-8 săpt. | |
Hardback (1) | 1108.24 lei 6-8 săpt. | |
CRC Press – 8 iul 2022 | 1108.24 lei 6-8 săpt. |
Preț: 434.03 lei
Nou
Puncte Express: 651
Preț estimativ în valută:
83.06€ • 86.61$ • 69.03£
83.06€ • 86.61$ • 69.03£
Carte tipărită la comandă
Livrare economică 21 martie-04 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032263380
ISBN-10: 1032263385
Pagini: 217
Ilustrații: 74
Dimensiuni: 156 x 234 x 12 mm
Greutate: 0.4 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States
ISBN-10: 1032263385
Pagini: 217
Ilustrații: 74
Dimensiuni: 156 x 234 x 12 mm
Greutate: 0.4 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States
Public țintă
Academic, Postgraduate, Professional, and Undergraduate AdvancedCuprins
Chapter 1. Hamilton Theory
Chapter 2. Preliminaries
Chapter 3. Outline of the KAM Proof
Chapter 4. Proof of the KAM Theorem
Chapter 5. Analytic Lemmas
Chapter 6. Geometric Lemmas
Chapter 7. Convergence Lemmas
Chapter 8. Arithmetic Lemmas
Chapter 2. Preliminaries
Chapter 3. Outline of the KAM Proof
Chapter 4. Proof of the KAM Theorem
Chapter 5. Analytic Lemmas
Chapter 6. Geometric Lemmas
Chapter 7. Convergence Lemmas
Chapter 8. Arithmetic Lemmas
Notă biografică
Author
Achim Feldmeier is a professor at Universität Potsdam, Germany.
Achim Feldmeier is a professor at Universität Potsdam, Germany.
Descriere
This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem.