Introduction to Bayesian Econometrics
Autor Edward Greenbergen Limba Engleză Paperback – 20 aug 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 370.35 lei 6-8 săpt. | |
Cambridge University Press – 20 aug 2014 | 370.35 lei 6-8 săpt. | |
Hardback (1) | 424.92 lei 6-8 săpt. | |
Cambridge University Press – 11 noi 2012 | 424.92 lei 6-8 săpt. |
Preț: 370.35 lei
Nou
Puncte Express: 556
Preț estimativ în valută:
70.88€ • 73.72$ • 59.40£
70.88€ • 73.72$ • 59.40£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107436770
ISBN-10: 110743677X
Pagini: 270
Ilustrații: 29 b/w illus. 19 tables
Dimensiuni: 178 x 254 x 14 mm
Greutate: 0.48 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 110743677X
Pagini: 270
Ilustrații: 29 b/w illus. 19 tables
Dimensiuni: 178 x 254 x 14 mm
Greutate: 0.48 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Part I. Fundamentals of Bayesian Inference: 1. Introduction; 2. Basic concepts of probability and inference; 3. Posterior distributions and inference; 4. Prior distributions; Part II. Simulation: 5. Classical simulation; 6. Basics of Markov chains; 7. Simulation by MCMC methods; Part III. Applications: 8. Linear regression and extensions; 9. Semiparametric regression; 10. Multivariate responses; 11. Time series; 12. Endogenous covariates and sample selection; A. Probability distributions and matrix theorems; B. Computer programs for MCMC calculations.
Recenzii
'Edward Greenberg's Introduction to Bayesian Econometrics provides clear and concise coverage of Bayesian theory, computational methods, and important applications. Three years of teaching from its first edition convince me that it is a splendid textbook. The second edition is further enhanced by more applications and new guidance on use of free R software.' John P. Burkett, University of Rhode Island
'The apple has not fallen far from the tree, as this second edition of Introduction to Bayesian Econometrics continues in the fine tradition of its predecessor. Along with considerable new material, this second edition contains a thoughtful discussion of important models in time series and financial econometrics (including ARCH/GARCH and stochastic volatility models), as well as an introduction to flexible Bayesian techniques for distribution and regression function modeling. Throughout the text Greenberg engages the reader with an accessible writing style, real data applications, and references to the R programming language. There is much to be learned within these pages. Students and researchers in statistics, biostatistics, economics, and the social sciences will find this to be a tremendously valuable resource.' Justin Tobias, Purdue University
Review of the first edition: 'Professor Greenberg has assembled a tremendously valuable resource for anyone who wants to learn more about the Bayesian world. The book begins at an introductory level that should be accessible to a wide range of readers and then builds on these fundamental ideas to help the reader develop an in-depth understanding of modern Bayesian econometrics. The explanations are very clearly written, and the content is supported with many detailed examples and real-data applications.' Douglas J. Miller, University of Missouri, Columbia
Review of the first edition: 'This concise textbook covers the theoretical underpinnings of econometrics, the MCMC algorithm, and a large number of important econometric applications in an accessible yet rigorous manner. I highly recommend Greenberg's book as a PhD-level textbook and as a source of reference for researchers entering the field.' Rainer Winkelmann, University of Zurich
Review of the first edition: 'This book provides an excellent introduction to Bayesian econometrics and statistics with many references to the recent literature that will be very helpful for students and others who have a strong background in calculus.' Arnold Zellner, University of Chicago
'The apple has not fallen far from the tree, as this second edition of Introduction to Bayesian Econometrics continues in the fine tradition of its predecessor. Along with considerable new material, this second edition contains a thoughtful discussion of important models in time series and financial econometrics (including ARCH/GARCH and stochastic volatility models), as well as an introduction to flexible Bayesian techniques for distribution and regression function modeling. Throughout the text Greenberg engages the reader with an accessible writing style, real data applications, and references to the R programming language. There is much to be learned within these pages. Students and researchers in statistics, biostatistics, economics, and the social sciences will find this to be a tremendously valuable resource.' Justin Tobias, Purdue University
Review of the first edition: 'Professor Greenberg has assembled a tremendously valuable resource for anyone who wants to learn more about the Bayesian world. The book begins at an introductory level that should be accessible to a wide range of readers and then builds on these fundamental ideas to help the reader develop an in-depth understanding of modern Bayesian econometrics. The explanations are very clearly written, and the content is supported with many detailed examples and real-data applications.' Douglas J. Miller, University of Missouri, Columbia
Review of the first edition: 'This concise textbook covers the theoretical underpinnings of econometrics, the MCMC algorithm, and a large number of important econometric applications in an accessible yet rigorous manner. I highly recommend Greenberg's book as a PhD-level textbook and as a source of reference for researchers entering the field.' Rainer Winkelmann, University of Zurich
Review of the first edition: 'This book provides an excellent introduction to Bayesian econometrics and statistics with many references to the recent literature that will be very helpful for students and others who have a strong background in calculus.' Arnold Zellner, University of Chicago
Notă biografică
Descriere
This textbook is an introduction to econometrics from the Bayesian viewpoint. The second edition includes new material.