Introduction to Clustering Large and High-Dimensional Data
Autor Jacob Koganen Limba Engleză Paperback – 12 noi 2006
Preț: 267.46 lei
Preț vechi: 334.32 lei
-20% Nou
Puncte Express: 401
Preț estimativ în valută:
51.19€ • 53.17$ • 42.52£
51.19€ • 53.17$ • 42.52£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780521617932
ISBN-10: 0521617936
Pagini: 222
Dimensiuni: 153 x 229 x 15 mm
Greutate: 0.3 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 0521617936
Pagini: 222
Dimensiuni: 153 x 229 x 15 mm
Greutate: 0.3 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
1. Introduction and motivation; 2. Quadratic k-means algorithm; 3. BIRCH; 4. Spherical k-means algorithm; 5. Linear algebra techniques; 6. Information-theoretic clustering; 7. Clustering with optimization techniques; 8. k-means clustering with divergence; 9. Assessment of clustering results; 10. Appendix: Optimization and Linear Algebra Background; 11. Solutions to selected problems.
Recenzii
"...this book may serve as a useful reference for scientists and engineers who need to understand the concepts of clustering in general and/or to focus on text mining applications. It is also appropriate for students who are attending a course in pattern recognition, data mining, or classification and are interested in learning more about issues related to the k-means scheme for an undergraduate or master's thesis project. Last, it supplies very interesting material for instructors."
Nicolas Loménie, IAPR Newsletter
Nicolas Loménie, IAPR Newsletter
Notă biografică
Descriere
Focuses on a few of the important clustering algorithms in the context of information retrieval.