Process Mining Techniques in Business Environments: Theoretical Aspects, Algorithms, Techniques and Open Challenges in Process Mining: Lecture Notes in Business Information Processing, cartea 207
Autor Andrea Burattinen Limba Engleză Paperback – 15 mai 2015
The book encompasses a revised version of the author's PhD thesis, which won the "Best Process Mining Dissertation Award" in 2014, awarded by the IEEE Task Force on Process Mining.
Din seria Lecture Notes in Business Information Processing
- 20% Preț: 321.35 lei
- 20% Preț: 322.17 lei
- Preț: 285.94 lei
- 20% Preț: 407.42 lei
- Preț: 370.52 lei
- Preț: 383.74 lei
- 20% Preț: 317.29 lei
- 20% Preț: 326.20 lei
- 20% Preț: 334.30 lei
- Preț: 384.70 lei
- Preț: 376.22 lei
- 20% Preț: 326.20 lei
- Preț: 374.30 lei
- Preț: 376.22 lei
- Preț: 377.87 lei
- 20% Preț: 321.49 lei
- Preț: 379.59 lei
- Preț: 377.13 lei
- Preț: 370.36 lei
- Preț: 377.13 lei
- Preț: 379.96 lei
- Preț: 371.48 lei
- Preț: 377.13 lei
- Preț: 476.63 lei
- 20% Preț: 403.36 lei
- Preț: 383.74 lei
- Preț: 384.49 lei
- Preț: 473.80 lei
- 20% Preț: 333.80 lei
- Preț: 376.22 lei
- 20% Preț: 339.27 lei
- Preț: 390.36 lei
- Preț: 386.57 lei
- 20% Preț: 324.24 lei
- Preț: 376.76 lei
- 20% Preț: 409.85 lei
- Preț: 476.63 lei
- Preț: 391.27 lei
- Preț: 471.89 lei
- 20% Preț: 331.86 lei
- Preț: 470.02 lei
- 20% Preț: 322.17 lei
- 20% Preț: 345.59 lei
- Preț: 391.27 lei
- Preț: 383.74 lei
- 20% Preț: 410.67 lei
- 20% Preț: 322.17 lei
- Preț: 383.74 lei
- 20% Preț: 291.05 lei
Preț: 378.40 lei
Preț vechi: 472.99 lei
-20% Nou
Puncte Express: 568
Preț estimativ în valută:
72.44€ • 75.41$ • 59.64£
72.44€ • 75.41$ • 59.64£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319174815
ISBN-10: 3319174819
Pagini: 220
Ilustrații: XII, 220 p. 101 illus.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.33 kg
Ediția:2015
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Business Information Processing
Locul publicării:Cham, Switzerland
ISBN-10: 3319174819
Pagini: 220
Ilustrații: XII, 220 p. 101 illus.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.33 kg
Ediția:2015
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Business Information Processing
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
1 Introduction.- Part I: State of the Art: BPM, Data Mining and Process Mining.- 2 Introduction to Business Processes, BPM, and BPM Systems.- 3 Data Generated by Information Systems (and How to Get It).- 4 Data Mining for Information System Data.- 5 Process Mining.- 6 Quality Criteria in Process Mining.- 7 Event Streams.- Part II: Obstacles to Process Mining in Practice.- 8 Obstacles to Applying Process Mining in Practice.- 9 Long-term View Scenario.- Part III: Process Mining as an Emerging Technology.- 10 Data Preparation.- 11 Heuristics Miner for Time Interval.- 12 Automatic Configuration of Mining Algorithm.- 13 User-Guided Discovery of Process Models.- 14 Extensions of Business Processes with Organizational Roles.- 15 Results Interpretation and Evaluation.- 16 Hands-On: Obtaining Test Data.- Part IV: A New Challenge in Process Mining.- 17 Process Mining for Stream Data Sources.- Part V: Conclusions and Future Work.- 18 Conclusions and Future Work.
Textul de pe ultima copertă
After a brief presentation of the state of the art of process-mining techniques, Andrea Burratin proposes different scenarios for the deployment of process-mining projects, and in particular a characterization of companies in terms of their process awareness. The approaches proposed in this book belong to two different computational paradigms: first to classic "batch process mining," and second to more recent "online process mining."
The book encompasses a revised version of the author's PhD thesis, which won the "Best Process Mining Dissertation Award" in 2014, awarded by the IEEE Task Force on Process Mining.
The book encompasses a revised version of the author's PhD thesis, which won the "Best Process Mining Dissertation Award" in 2014, awarded by the IEEE Task Force on Process Mining.
Caracteristici
Includes supplementary material: sn.pub/extras