Cantitate/Preț
Produs

Privacy in Statistical Databases: UNESCO Chair in Data Privacy, International Conference, PSD 2020, Tarragona, Spain, September 23–25, 2020, Proceedings: Lecture Notes in Computer Science, cartea 12276

Editat de Josep Domingo-Ferrer, Krishnamurty Muralidhar
en Limba Engleză Paperback – 21 aug 2020
This book constitutes the refereed proceedings of the International Conference on Privacy in Statistical Databases, PSD 2020, held in Tarragona, Spain, in September 2020 under the sponsorship of the UNESCO Chair in Data Privacy.
The 25 revised full papers presented were carefully reviewed and selected from 49 submissions. The papers are organized into the following topics: privacy models; microdata protection; protection of statistical tables; protection of interactive and mobility databases; record linkage and alternative methods; synthetic data; data quality; and case studies.
The Chapter “Explaining recurrent machine learning models: integral privacy revisited” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Citește tot Restrânge

Din seria Lecture Notes in Computer Science

Preț: 49293 lei

Preț vechi: 61617 lei
-20% Nou

Puncte Express: 739

Preț estimativ în valută:
9433 9922$ 7858£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030575205
ISBN-10: 3030575209
Pagini: 370
Ilustrații: XI, 370 p. 25 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.54 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI

Locul publicării:Cham, Switzerland

Cuprins

Privacy models.- Microdata protection.- Protection of statistical tables.- Protection of interactive and mobility databases.- Record linkage and alternative methods.- Synthetic data.- Data quality.- Case studies.

Textul de pe ultima copertă

The Chapter “Explaining recurrent machine learning models: integral privacy revisited” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.