Cantitate/Preț
Produs

Introduction to Functions of a Complex Variable: Chapman & Hall/CRC Pure and Applied Mathematics

Autor J. H. Curtiss
en Limba Engleză Paperback – 18 dec 2020
This book includes information on elementary general topology, the Cauchy Integral Theorem and concepts of homology and homotopy in their application to the Cauchy theory. It is intended for an introductory course in complex analysis at the first-year graduate and advanced undergraduate level.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 46103 lei  6-8 săpt.
  CRC Press – 18 dec 2020 46103 lei  6-8 săpt.
Hardback (1) 220776 lei  6-8 săpt.
  CRC Press – apr 1978 220776 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Pure and Applied Mathematics

Preț: 46103 lei

Preț vechi: 54239 lei
-15% Nou

Puncte Express: 692

Preț estimativ în valută:
8823 9102$ 7467£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367452063
ISBN-10: 0367452065
Pagini: 416
Dimensiuni: 152 x 229 x 23 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Chapman & Hall/CRC Pure and Applied Mathematics


Public țintă

Professional Practice & Development

Cuprins

1. The Real and Complex Number Fields 2. Sequences and Series 3. Sequences and Series of Complex-Valued Functions 4. Introduction to Power Series 5. Some Elementary Topological Concepts 6. Complex Differential Calculus 7. The Exponential and Related Functions 8. Complex Line Integrals 9. Introduction to the Cauchy Theory 10. Zeros and Isolated Singularities of Analytic Functions 11. Residues and Rational Functions 12. Approximation of Analytic Functions by Rational Functions, and Generalizations of the Cauchy Theory 13. Conformal Mapping

Descriere

This book includes information on elementary general topology, the Cauchy Integral Theorem and concepts of homology and homotopy in their application to the Cauchy theory. It is intended for an introductory course in complex analysis at the first-year graduate and advanced undergraduate level.