Cantitate/Preț
Produs

Introduction to Geometric Probability: Lezioni Lincee

Autor Daniel A. Klain, Gian-Carlo Rota
en Limba Engleză Paperback – 10 dec 1997
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 42985 lei  6-8 săpt.
  Cambridge University Press – 10 dec 1997 42985 lei  6-8 săpt.
Hardback (1) 58853 lei  6-8 săpt.
  Cambridge University Press – 10 dec 1997 58853 lei  6-8 săpt.

Din seria Lezioni Lincee

Preț: 42985 lei

Nou

Puncte Express: 645

Preț estimativ în valută:
8227 8679$ 6856£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521596541
ISBN-10: 0521596548
Pagini: 196
Ilustrații: 5 b/w illus. 1 table
Dimensiuni: 138 x 216 x 12 mm
Greutate: 0.25 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Lezioni Lincee

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; 1. The Buffon needle problem; 2. Valuation and integral; 3. A discrete lattice; 4. The intrinsic volumes for parallelotopes; 5. The lattice of polyconvex sets; 6. Invariant measures on Grassmannians; 7. The intrinsic volumes for polyconvex sets; 8. A characterization theorem for volume; 9. Hadwiger's characterization theorem; 10. Kinematic formulas for polyconvex sets; 11. Polyconvex sets in the sphere; References; Index of symbols; Index.

Recenzii

'Geometers and combinatorialists will find this a stimulating and fruitful tale.' Fachinformationszentrum Karlsruhe
' … a brief and useful introduction …' European Mathematical Society

Descriere

The basic ideas of the subject and the analogues with enumerative combinatorics are described and exploited.