Introduction to Porous Materials: Inorganic Chemistry: A Textbook Series
Autor P Van Der Voorten Limba Engleză Hardback – 8 aug 2019
Din seria Inorganic Chemistry: A Textbook Series
- 20% Preț: 476.18 lei
- 9% Preț: 1148.39 lei
- 9% Preț: 814.45 lei
- 9% Preț: 1129.86 lei
- 9% Preț: 1042.40 lei
- 8% Preț: 456.86 lei
- 23% Preț: 462.20 lei
- 23% Preț: 473.98 lei
- 23% Preț: 428.97 lei
- 23% Preț: 495.06 lei
- 27% Preț: 1059.25 lei
- 18% Preț: 1236.44 lei
- 29% Preț: 350.15 lei
- 30% Preț: 355.33 lei
- 33% Preț: 778.56 lei
- 30% Preț: 470.24 lei
- 28% Preț: 438.55 lei
Preț: 567.14 lei
Preț vechi: 736.54 lei
-23% Nou
Puncte Express: 851
Preț estimativ în valută:
108.54€ • 112.74$ • 90.16£
108.54€ • 112.74$ • 90.16£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Livrare express 27 decembrie 24 - 02 ianuarie 25 pentru 56.13 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781119426608
ISBN-10: 111942660X
Pagini: 448
Dimensiuni: 175 x 250 x 22 mm
Greutate: 0.91 kg
Editura: Wiley
Seria Inorganic Chemistry: A Textbook Series
Locul publicării:Chichester, United Kingdom
ISBN-10: 111942660X
Pagini: 448
Dimensiuni: 175 x 250 x 22 mm
Greutate: 0.91 kg
Editura: Wiley
Seria Inorganic Chemistry: A Textbook Series
Locul publicării:Chichester, United Kingdom
Notă biografică
PASCAL VAN DER VOORT Center for Ordered Materials, Organometallics & Catalysis, Department of Chemistry, Ghent University, Belgium KAREN LEUS Center for Ordered Materials, Organometallics & Catalysis, Department of Chemistry, Ghent University, Belgium ELS DE CANCK Recticel NV Insulation, Belgium
Cuprins
Preface xi About the Authors xiii 1 Nature's Porous Materials: From Beautiful to Practical 1 1.1 Living Porosity 1 1.1.1 Butterflies 1 1.1.2 Algae 4 1.1.3 Bamboo 8 1.2 Clay Minerals 8 1.2.1 Natural Clays 8 1.2.2 Pillared Interlayered Clays - PILCs 12 References 13 2 Theory of Adsorption and Catalysis: Surface Area and Porosity 15 2.1 Determination of Surface Area and Porosity by Gas Sorption 15 2.1.1 Introduction 15 2.1.2 Chemisorption and Physisorption 15 2.1.3 Reversible Monolayer Adsorption - The Langmuir Isotherm 16 2.2 The BET (Brunauer, Emmet, Teller) Model 21 2.2.1 The BET Equation 21 2.2.2 Multipoint BET Analysis 23 2.3 Capillary Condensation and Pore Size, the Type IV Isotherm 25 2.3.1 The Kelvin and the Halsey Equation 25 2.3.2 Barrett, Joyner, Halenda (BJH) Pore Size Distributions 27 2.3.3 Types of Adsorption Isotherms 32 2.3.4 Adsorption Hysteresis 34 2.3.5 Evaluation of Micropores 36 2.4 Liquid Phase Adsorption - Langmuir and Freundlich Isotherms 37 2.4.1 Adsorption Kinetics 38 2.4.2 Adsorption Isotherms 40 2.5 Heterogeneous Catalysis 42 2.5.1 Introduction 42 2.5.2 Types of Catalysis 44 2.5.3 Toward Green and Sustainable Industrial Chemistry 46 2.5.4 Kinetics in a Heterogeneous Catalytic Reaction 50 2.5.5 Diffusion Phenomena 57 2.A Appendix 66 Exercises 68 Answers to the Problems 71 References 73 3 Zeolites and Zeotypes 75 3.1 Crystallographic Directions and Planes 75 3.1.1 Crystallographic Directions 75 3.1.2 Crystallographic Planes 77 3.2 X-Ray Diffraction 80 3.3 Zeolite Structures 82 3.4 Applications of Zeolites 85 3.4.1 Ion-Exchange, Water Softening 85 3.4.2 Catalysis 88 3.4.3 Gas Sorption and Purification 109 3.5 Solid-State NMR 111 3.5.1 Introduction to the Technique NMR 111 3.5.2 Nuclear Magnetic Resonance: The Basics 112 3.5.3 Solid-State NMR: The Challenges 115 3.5.4 The Application of Solid-State NMR 118 References 118 4 Silica, A Simple Oxide - A Case Study for FT-IR Spectroscopy 121 4.1 Different Methods to Synthesize Silica 121 4.1.1 Silica Gels and Sols 121 4.1.2 Pyrogenic Silicas 126 4.1.3 Precipitated Silicas 127 4.2 The Surface of Silica 127 4.3 Fourier Transform Infrared Spectroscopy 129 4.3.1 Principles of Infrared Spectroscopy 130 4.3.2 Principles of FT-IR 133 4.3.3 DRIFTS - Diffuse Reflectance Infrared Fourier Transform Spectroscopy 138 4.3.4 Attenuated Total Reflection 140 References 142 5 Ordered Mesoporous Silica 145 5.1 MCM-41 and MCM-48 - Revolution by the Mobil Oil Company 145 5.1.1 The Original Papers and Patents 145 5.1.2 Calculating the Wall Thickness 150 5.1.3 Interaction Between Surfactant and Inorganic Precursor 151 5.1.4 The Surfactant Packing Parameter 154 5.1.5 Hexagonal Mesoporous Silica 156 5.1.6 Stable Ordered Mesoporous Silica - SBA 157 5.1.7 Plugged Hexagonal Templated Silica 161 5.1.8 The New MCM-48: KIT-6 163 5.1.9 Further Developments of Mesoporous Silica 165 5.1.10 Pore Size Engineering 167 5.1.11 Making Thin Films - The EISA Principle 167 5.2 Applications of Mesoporous Silica 168 5.2.1 In Heterogeneous Catalysis - Functionalization of Mesoporous Silica 168 5.2.2 In Adsorption 183 5.2.3 As a Drug Carrier 188 5.2.4 Low-k Dielectrics 189 References 191 6 Carbons 195 6.1 Activated Carbon 195 6.2 General Introduction to Mesoporous Carbons 197 6.2.1 Synthesis of Hard-Templated Mesoporous Carbons 198 6.2.2 Synthesis of Soft-Templated Mesoporous Carbons 204 6.2.3 Influence of Synthesis Conditions on the Soft-Templated Method 207 6.2.4 Transformation of Polymer into Carbon, the Carbonization Temperature 215 6.2.5 (Hydro)Thermal and Mechanical Stability 216 6.3 Surface Modification of Mesoporous Polymers and Carbons 217 6.3.1 Pre-Modification of Polymers/Carbons 218 6.3.2 Post-Modification of Polymers/Carbons 218 6.4 Nanocarbons 218 6.4.1 Fullerenes 219 6.4.2 Carbon Nanotubes 224 6.5 Application of Porous Carbon-Based Materials 227 6.5.1 The Adsorption of Pollutants 227 6.5.2 As Catalytic Support or Direct Heterogeneous Catalyst 231 6.5.3 Electrochemical Applications: Energy Storage 237 Exercises 243 Answers to the Problems 243 References 245 7 The Era of the Hybrids - Part 1: Periodic Mesoporous Organosilicas or PMOS 249 7.1 Introduction 249 7.2 Synthesis of PMOs 253 7.2.1 General Aspects of PMO Synthesis 253 7.2.2 PMOs with Aliphatic Bridges 257 7.2.3 PMOs with Olefinic and Aromatic Bridges 258 7.2.4 PMOs with Multi-Organic Bridges 264 7.3 General Properties of PMOs 265 7.3.1 Pore Size Engineering 265 7.3.2 (Hydro)thermal and Chemical Stability 267 7.3.3 Metamorphosis in PMOs 269 7.4 Post-Modification of PMOs 270 7.4.1 Post-Functionalization of the Unsaturated Bridges 271 7.4.2 Post-Modification of the Aromatic Ring 275 7.5 Applications of PMOs 276 7.5.1 As Heterogeneous Catalysts 276 7.5.2 As Adsorbents of Metals, Organic Compounds, and Gases 290 7.5.3 As Solid Chromatographic Packing Materials 294 7.5.4 As Low-k Films 297 7.5.5 As Biomedical Supports 298 Exercises 300 Answers to the Problems 302 References 303 8 Era of the Hybrids - Part 2: Metal-Organic Frameworks 309 8.1 Introduction 309 8.2 Isoreticular Synthesis 312 8.3 Well-Known MOFs 313 8.3.1 Cu-BTC 314 8.3.2 MIL-53 314 8.3.3 MIL-101 315 8.3.4 UiO-66 315 8.3.5 NU-1000 317 8.3.6 ZIF-8 318 8.4 Stability of MOFs 318 8.5 Preparation of MOFs 320 8.5.1 Hydro- and Solvothermal Synthesis 320 8.5.2 Microwave-Assisted Synthesis 320 8.5.3 Electrochemical Synthesis Route 321 8.5.4 High-Throughput Analysis 321 8.6 Functionalities in MOFs 321 8.6.1 Active Sites in MOFs 321 8.6.2 Multifunctional MOFs 322 8.7 Applications of MOFs 332 8.7.1 MOFs in Gas Storage and Gas Separation 332 8.7.2 MOFs in Catalysis 351 8.7.3 Luminescent MOFs 355 8.8 Industrial Applications of MOFs 364 8.9 Transmission Electron Microscopy 366 8.9.1 Electron Diffraction and Bright Field Imaging 367 8.9.2 High-Resolution Transmission Electron Microscopy 368 8.9.3 Scanning Transmission Electron Microscopy 369 8.9.4 Energy Dispersive X-Ray Spectroscopy 371 8.9.5 Electron Energy Loss Spectroscopy 371 8.9.6 Electron Tomography 371 Exercises 372 Answers to the Problems 374 References 377 9 Beyond the Hybrids - Covalent Organic Frameworks 381 9.1 Classification and Nature of COFs 381 9.2 Design of COFs 383 9.3 Boron-Based COFs 386 9.3.1 Introduction 386 9.3.2 Other Synthetic Routes to Obtain Boron-Based COFs 389 9.3.3 Methods to Increase the Stability of Boron-Based COFs 391 9.3.4 Applications of Boron-Containing COFs 392 9.4 Covalent Triazine Frameworks 395 9.4.1 Ionothermal Synthesis of Covalent Triazine Frameworks 395 9.4.2 Acid Assisted Synthesis Route 398 9.4.3 Mechanochemical Synthesis 398 9.4.4 Applications of CTFs 399 9.5 Imine COFs 404 9.5.1 Solvothermal Synthesis: COF-300 404 9.5.2 Room Temperature Synthesis of Imine COFs 406 9.5.3 Liquid Assisted Grinding 407 9.5.4 Applications of Imine COFs 408 Exercises 414 Answers to the Problems 415 References 417 Index 419