Intuitive Understanding of Kalman Filtering with MATLAB®
Autor Armando Barreto, Malek Adjouadi, Francisco Ortega, Nonnarit O-larnnithipongen Limba Engleză Hardback – 7 sep 2020
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 437.07 lei 6-8 săpt. | |
CRC Press – 7 sep 2020 | 437.07 lei 6-8 săpt. | |
Hardback (1) | 884.79 lei 6-8 săpt. | |
CRC Press – 7 sep 2020 | 884.79 lei 6-8 săpt. |
Preț: 884.79 lei
Preț vechi: 1079.01 lei
-18% Nou
Puncte Express: 1327
Preț estimativ în valută:
169.45€ • 174.59$ • 141.95£
169.45€ • 174.59$ • 141.95£
Carte tipărită la comandă
Livrare economică 25 februarie-11 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367191351
ISBN-10: 0367191350
Pagini: 248
Ilustrații: 52
Dimensiuni: 156 x 234 x 16 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 0367191350
Pagini: 248
Ilustrații: 52
Dimensiuni: 156 x 234 x 16 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Public țintă
Academic and Professional Practice & DevelopmentCuprins
Part I Background
Chapter 1 ■ System Models and Random Variables 3
Chapter 2 ■ Multiple Random Sequences
Chapter 3 ■ Conditional Probability, Bayes’ Rule and Bayesian Estimation 45
Part II Where Does Kalman Filtering Apply and What Does It Intend to Do?
Chapter 4 ■ A Simple Scenario Where Kalman
Chapter 5 ■ General Scenario Addressed by Kalman Filtering and Specific Cases 61
Chapter 6 ■ Arriving at the Kalman Filter Algorithm 75
Chapter 7 ■ Reflecting on the Meaning and Evolution of the Entities in the Kalman Filter Algorithm 87
Part III Examples in MATLAB®
Chapter 8 ■ MATLAB® Function to Implement and Exemplify the Kalman Filter 103
Chapter 9 ■ Univariate Example of Kalman Filter in MATLAB® 113
Chapter 10 ■ Multivariate Example of Kalman Filter in MATLAB® 131
Part IV Kalman Filtering Application to IMUs
Chapter 11 ■ Kalman Filtering Applied to 2-Axis Attitude Estimation from Real IMU Signals 153
Chapter 12 ■ Real-Time Kalman Filtering Application to Attitude Estimation from IMU Signals 179
APPENDIX A □LISTINGS OF THE FILES FOR REAL-TIME IMPLEMENTATION OF THE KALMAN
FILTER FOR ATTITUDE ESTIMATION WITH ROTATIONS IN 2 AXES, 197
Chapter 1 ■ System Models and Random Variables 3
Chapter 2 ■ Multiple Random Sequences
Chapter 3 ■ Conditional Probability, Bayes’ Rule and Bayesian Estimation 45
Part II Where Does Kalman Filtering Apply and What Does It Intend to Do?
Chapter 4 ■ A Simple Scenario Where Kalman
Chapter 5 ■ General Scenario Addressed by Kalman Filtering and Specific Cases 61
Chapter 6 ■ Arriving at the Kalman Filter Algorithm 75
Chapter 7 ■ Reflecting on the Meaning and Evolution of the Entities in the Kalman Filter Algorithm 87
Part III Examples in MATLAB®
Chapter 8 ■ MATLAB® Function to Implement and Exemplify the Kalman Filter 103
Chapter 9 ■ Univariate Example of Kalman Filter in MATLAB® 113
Chapter 10 ■ Multivariate Example of Kalman Filter in MATLAB® 131
Part IV Kalman Filtering Application to IMUs
Chapter 11 ■ Kalman Filtering Applied to 2-Axis Attitude Estimation from Real IMU Signals 153
Chapter 12 ■ Real-Time Kalman Filtering Application to Attitude Estimation from IMU Signals 179
APPENDIX A □LISTINGS OF THE FILES FOR REAL-TIME IMPLEMENTATION OF THE KALMAN
FILTER FOR ATTITUDE ESTIMATION WITH ROTATIONS IN 2 AXES, 197
Descriere
The emergence of affordable micro sensors, such as MEMS Inertial Measurement Systems, which are being applied in embedded systems and Internet-of-Things devices, has brought techniques such as Kalman Filtering, capable of combining information from multiple sensors or sources, to the interest of students and hobbyists.