Cantitate/Preț
Produs

Inverse Problems and Data Assimilation: London Mathematical Society Student Texts, cartea 107

Autor Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb
en Limba Engleză Paperback – 9 aug 2023
This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 22928 lei  3-5 săpt. +1183 lei  6-12 zile
  Cambridge University Press – 9 aug 2023 22928 lei  3-5 săpt. +1183 lei  6-12 zile
Hardback (1) 50524 lei  6-8 săpt.
  Cambridge University Press – 9 aug 2023 50524 lei  6-8 săpt.

Din seria London Mathematical Society Student Texts

Preț: 22928 lei

Nou

Puncte Express: 344

Preț estimativ în valută:
4388 4629$ 3657£

Carte disponibilă

Livrare economică 13-27 decembrie
Livrare express 28 noiembrie-04 decembrie pentru 2182 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781009414296
ISBN-10: 1009414291
Pagini: 221
Dimensiuni: 229 x 152 x 15 mm
Greutate: 0.31 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Student Texts

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; Part I. Inverse Problems: 1. Bayesian inverse problems and well-posedness; 2. The linear-Gaussian setting; 3. Optimization perspective; 4. Gaussian approximation; 5. Monte Carlo sampling and importance sampling; 6. Markov chain Monte Carlo; Exercises for Part I; Part II. Data Assimilation: 7. Filtering and smoothing problems and well-posedness; 8. The Kalman filter and smoother; 9. Optimization for filtering and smoothing: 3DVAR and 4DVAR; 10. The extended and ensemble Kalman filters; 11. Particle filter; 12. Optimal particle filter; Exercises for Part II; Part III. Kalman Inversion: 13. Blending inverse problems and data assimilation; References; Index.

Notă biografică


Descriere

A clear and concise mathematical introduction to the subjects of inverse problems and data assimilation, and their inter-relations.