Kernel Methods and Machine Learning
Autor S. Y. Kungen Limba Engleză Hardback – 16 apr 2014
Preț: 634.31 lei
Preț vechi: 792.88 lei
-20% Nou
Puncte Express: 951
Preț estimativ în valută:
121.39€ • 125.23$ • 102.74£
121.39€ • 125.23$ • 102.74£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107024960
ISBN-10: 110702496X
Pagini: 572
Ilustrații: 136 b/w illus. 21 tables
Dimensiuni: 176 x 252 x 29 mm
Greutate: 1.36 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 110702496X
Pagini: 572
Ilustrații: 136 b/w illus. 21 tables
Dimensiuni: 176 x 252 x 29 mm
Greutate: 1.36 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Part I. Machine Learning and Kernel Vector Spaces: 1. Fundamentals of machine learning; 2. Kernel-induced vector spaces; Part II. Dimension-Reduction: Feature Selection and PCA/KPCA: 3. Feature selection; 4. PCA and Kernel-PCA; Part III. Unsupervised Learning Models for Cluster Analysis: 5. Unsupervised learning for cluster discovery; 6. Kernel methods for cluster discovery; Part IV. Kernel Ridge Regressors and Variants: 7. Kernel-based regression and regularization analysis; 8. Linear regression and discriminant analysis for supervised classification; 9. Kernel ridge regression for supervised classification; Part V. Support Vector Machines and Variants: 10. Support vector machines; 11. Support vector learning models for outlier detection; 12. Ridge-SVM learning models; Part VI. Kernel Methods for Green Machine Learning Technologies: 13. Efficient kernel methods for learning and classifcation; Part VII. Kernel Methods and Statistical Estimation Theory: 14. Statistical regression analysis and errors-in-variables models; 15: Kernel methods for estimation, prediction, and system identification; Part VIII. Appendices: Appendix A. Validation and test of learning models; Appendix B. kNN, PNN, and Bayes classifiers; References; Index.
Descriere
Covering the fundamentals of kernel-based learning theory, this is an essential resource for graduate students and professionals in computer science.