Cantitate/Preț
Produs

Knowledge-Based Vision-Guided Robots: Studies in Fuzziness and Soft Computing, cartea 103

Autor Nick Barnes, Zhi-Quiang Liu
en Limba Engleză Paperback – 2 aug 2012
Many robotics researchers consider high-level vision algorithms (computational) too expensive for use in robot guidance. This book introduces the reader to an alternative approach to perception for autonomous, mobile robots. It explores how to apply methods of high-level computer vision and fuzzy logic to the guidance and control of the mobile robot. The book introduces a knowledge-based approach to vision modeling for robot guidance, where advantage is taken of constraints of the robot's physical structure, the tasks it performs, and the environments it works in. This facilitates high-level computer vision algorithms such as object recognition at a speed that is sufficient for real-time navigation. The texts presents algorithms that exploit these constraints at all levels of vision, from image processing to model construction and matching, as well as shape recovery. These algorithms are demonstrated in the navigation of a wheeled mobile robot.
Citește tot Restrânge

Din seria Studies in Fuzziness and Soft Computing

Preț: 32346 lei

Preț vechi: 40432 lei
-20% Nou

Puncte Express: 485

Preț estimativ în valută:
6190 6512$ 5125£

Carte tipărită la comandă

Livrare economică 14-28 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662003121
ISBN-10: 3662003120
Pagini: 248
Ilustrații: X, 212 p. 174 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: Physica-Verlag HD
Colecția Physica
Seria Studies in Fuzziness and Soft Computing

Locul publicării:Heidelberg, Germany

Public țintă

Professional/practitioner

Cuprins

1 Introduction.- 1.1 Background.- 1.2 Aims of the Research Presented in this Book: A Problem in Robot Vision.- 1.3 The Approach of this Book.- 1.4 About the Chapters.- 2 Related Systems and Ideas.- 2.1 Basic computer vision approaches.- 2.2 Vision-Guided Mobile Robot Systems.- 2.3 Computer Vision for Mobile Robots.- 2.4 Conclusion.- 3 Embodied Vision For Mobile Robots.- 3.1 Introduction.- 3.2 The Classical Computer Vision Paradigm.- 3.3 Problems with Classical Computer Vision.- 3.4 Applying Embodied Concepts in Human Vision.- 3.5 Embodiment of Vision-guided Robots.- 3.6 Embodiment for Vision-guided Robots.- 3.7 Conclusion.- 4 Object Recognition Mobile Robot Guidance.- 4.1 Introduction.- 4.2 System Perspective.- 4.3 Object Recognition.- 4.4 Determining Object Pose and Distance.- 4.5 Conclusion.- 5 Edge Segmentation and Matching.- 5.1 Edge Extraction.- 5.2 Edge Matching.- 6 Knowledge Based Shape from Shading.- 6.1 Introduction.- 6.2 Using Object Model Knowledge for Shape-From-Shading.- 6.3 A New Boundary Condition for Shape-From-Shading.- 6.4 Knowledge-based Implementation.- 6.5 Experimental Method and Results.- 6.6 Conclusion.- 7 Supporting Navigation Components.- 7.1 Model-based Path Planning.- 7.2 Odometry and Obstacle Avoidance Subsystem.- 8 Fuzzy Control for Active Perceptual Docking.- 8.1 Introduction.- 8.2 Direction Control for Robot Docking.- 8.3 A Fuzzy Control Scheme.- 8.4 Results.- 8.5 Conclusion.- 9 System Results and Case Studies.- 9.1 Evaluation of Components.- 9.2 Case Studies.- 9.3 Conclusion.- 10 Conclusion.- 10.1 Limitations of the Research Presented and Future Work.- 10.2 Extended quotation from Descartes.

Caracteristici

Includes supplementary material: sn.pub/extras