Cantitate/Preț
Produs

Representations for Genetic and Evolutionary Algorithms: Studies in Fuzziness and Soft Computing, cartea 104

Autor Franz Rothlauf Cuvânt înainte de D.E. Goldberg
en Limba Engleză Paperback – 18 apr 2012
In the field of genetic and evolutionary algorithms (GEAs), much theory and empirical study has been heaped upon operators and test problems, but problem representation has often been taken as given. This monograph breaks with this tradition and studies a number of critical elements of a theory of representations for GEAs and applies them to the empirical study of various important idealized test functions and problems of commercial import. The book considers basic concepts of representations, such as redundancy, scaling and locality and describes how GEAs'performance is influenced. Using the developed theory representations can be analyzed and designed in a theory-guided manner. The theoretical concepts are used as examples for efficiently solving integer optimization problems and network design problems. The results show that proper representations are crucial for GEAs'success.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 33304 lei  6-8 săpt.
  Physica-Verlag HD – 18 apr 2012 33304 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 14 oct 2010 94672 lei  6-8 săpt.
Hardback (1) 95289 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 10 ian 2006 95289 lei  6-8 săpt.

Din seria Studies in Fuzziness and Soft Computing

Preț: 33304 lei

Preț vechi: 41630 lei
-20% Nou

Puncte Express: 500

Preț estimativ în valută:
6374 6569$ 5382£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642880964
ISBN-10: 3642880967
Pagini: 308
Ilustrații: XIV, 290 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: Physica-Verlag HD
Colecția Physica
Seria Studies in Fuzziness and Soft Computing

Locul publicării:Heidelberg, Germany

Public țintă

Professional/practitioner

Cuprins

1. Introduction.- 1.1 Purpose.- 1.2 Organization.- 2. Representations for Genetic and Evolutionary Algorithms.- 2.1 Genetic Representations.- 2.2 Genetic and Evolutionary Algorithms.- 2.3 Problem Difficulty.- 2.4 Existing Recommendations for the Design of Efficient Representations for Genetic and Evolutionary Algorithms.- 3. Three Elements of a Theory of Genetic and Evolutionary Representations.- 3.1 Redundancy.- 3.2 Building Block-Scaling.- 3.3 Distance Distortion.- 3.4 Summary and Conclusions.- 4. Time-Quality Framework for a Theory-Based Analysis and Design of Representations.- 4.1 Solution Quality and Time to Convergence.- 4.2 Elements of the Framework.- 4.3 The Framework.- 4.4 Implications for the Design of Representations.- 4.5 Summary and Conclusions.- 5. Analysis of Binary Representations of Integers.- 5.1 Two Integer Optimization Problems.- 5.2 Binary String Representations.- 5.3 A Theoretical Comparison.- 5.4 Empirical Results.- 5.5 Conclusions.- 6. Analysis of Tree Representations.- 6.1 The Tree Design Problem.- 6.2 Prüfer Numbers.- 6.3 The Link and Node Biased Encoding.- 6.4 The Characteristic Vector Encoding.- 6.5 Conclusions.- 7. Design of Tree Representations.- 7.1 Network Random Keys (NetKeys).- 7.2 A Direct Tree Representation (NetDir).- 8. Performance of Genetic and Evolutionary Algorithms on Tree Problems.- 8.1 GEA Performance on Scalable Test Tree Problems.- 8.2 GEA Performance on the Optimal Communication Spanning Tree Problem.- 8.3 Summary.- 9. Summary, Conclusions and Future Work.- 9.1 Summary.- 9.2 Conclusions.- 9.3 Future Work.- A. Optimal Communication Spanning Tree Test Instances.- A.1 Palmer’s Test Instances.- A.2 Raidl’s Test Instances.- A.3 Berry’s Test Instances.- A.4 Real World Problems.- References.- List of Symbols.- List ofAcronyms.

Caracteristici

A theory of representations is not taken as given, but is developed and applied to real-world problems of commercial importance Includes supplementary material: sn.pub/extras

Textul de pe ultima copertă

In the field of genetic and evolutionary algorithms (GEAs), a large amount of theory and empirical study has focused on operators and test problems, while problem representation has often been taken as given. This book breaks away from this tradition and provides a comprehensive overview on the influence of problem representations on GEA performance.
The book summarizes existing knowledge regarding problem representations and describes how basic properties of representations, such as redundancy, scaling, or locality, influence the performance of GEAs and other heuristic optimization methods. Using the developed theory, representations can be analyzed and designed in a theory-guided matter. The theoretical concepts are used for solving integer optimization problems and network design problems more efficiently.
The book is written in an easy-to-read style and is intended for researchers, practitioners, and students who want to learn about representations. This second edition extends the analysis of the basic properties of representations and introduces a new chapter on the analysis of direct representations.