Cantitate/Preț
Produs

Knowledge Discovery in Inductive Databases: 5th International Workshop, KDID 2006 Berlin, Germany, September 18th, 2006 Revised Selected and Invited Papers: Lecture Notes in Computer Science, cartea 4747

Editat de Saso Dzeroski, Jan Struyf
en Limba Engleză Paperback – 7 noi 2007

Din seria Lecture Notes in Computer Science

Preț: 32780 lei

Preț vechi: 40975 lei
-20% Nou

Puncte Express: 492

Preț estimativ în valută:
6273 6516$ 5211£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540755487
ISBN-10: 3540755489
Pagini: 318
Ilustrații: X, 301 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.48 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Invited Talk.- Value, Cost, and Sharing: Open Issues in Constrained Clustering.- Contributed Papers.- Mining Bi-sets in Numerical Data.- Extending the Soft Constraint Based Mining Paradigm.- On Interactive Pattern Mining from Relational Databases.- Analysis of Time Series Data with Predictive Clustering Trees.- Integrating Decision Tree Learning into Inductive Databases.- Using a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets.- An Integrated Multi-task Inductive Database VINLEN: Initial Implementation and Early Results.- Beam Search Induction and Similarity Constraints for Predictive Clustering Trees.- Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDs.- Extracting Trees of Quantitative Serial Episodes.- IQL: A Proposal for an Inductive Query Language.- Mining Correct Properties in Incomplete Databases.- Efficient Mining Under Rich Constraints Derived from Various Datasets.- Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growth.- Discussion Paper.- Towards a General Framework for Data Mining.