Knowledge Discovery in Multiple Databases: Advanced Information and Knowledge Processing
Autor Shichao Zhang, Chengqi Zhang, Xindong Wuen Limba Engleză Hardback – 30 aug 2004
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 624.74 lei 6-8 săpt. | |
SPRINGER LONDON – 4 oct 2012 | 624.74 lei 6-8 săpt. | |
Hardback (1) | 628.91 lei 6-8 săpt. | |
SPRINGER LONDON – 30 aug 2004 | 628.91 lei 6-8 săpt. |
Din seria Advanced Information and Knowledge Processing
- 20% Preț: 330.41 lei
- 20% Preț: 51.89 lei
- 20% Preț: 1012.35 lei
- 18% Preț: 706.03 lei
- 20% Preț: 627.77 lei
- 20% Preț: 962.36 lei
- 20% Preț: 629.06 lei
- 20% Preț: 967.94 lei
- 20% Preț: 965.85 lei
- 20% Preț: 956.75 lei
- 20% Preț: 635.63 lei
- 20% Preț: 961.37 lei
- 20% Preț: 962.83 lei
- 15% Preț: 627.29 lei
- 20% Preț: 794.13 lei
- 20% Preț: 963.00 lei
- 18% Preț: 1082.81 lei
- 20% Preț: 589.91 lei
- 20% Preț: 967.16 lei
- Preț: 441.96 lei
- 20% Preț: 964.12 lei
- 20% Preț: 626.66 lei
- 20% Preț: 629.06 lei
- 20% Preț: 620.40 lei
- 18% Preț: 927.66 lei
- 20% Preț: 625.53 lei
- 20% Preț: 954.80 lei
- 20% Preț: 626.83 lei
- 18% Preț: 923.69 lei
- 20% Preț: 894.73 lei
- 20% Preț: 634.98 lei
- 20% Preț: 959.64 lei
- 18% Preț: 920.47 lei
- 20% Preț: 976.13 lei
- 20% Preț: 632.26 lei
- 20% Preț: 969.56 lei
- 20% Preț: 624.25 lei
- 20% Preț: 959.64 lei
- 20% Preț: 968.75 lei
- 20% Preț: 631.95 lei
- 20% Preț: 629.06 lei
Preț: 628.91 lei
Preț vechi: 786.14 lei
-20% Nou
Puncte Express: 943
Preț estimativ în valută:
120.37€ • 126.98$ • 100.31£
120.37€ • 126.98$ • 100.31£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781852337032
ISBN-10: 1852337036
Pagini: 245
Ilustrații: XII, 233 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:2004
Editura: SPRINGER LONDON
Colecția Springer
Seria Advanced Information and Knowledge Processing
Locul publicării:London, United Kingdom
ISBN-10: 1852337036
Pagini: 245
Ilustrații: XII, 233 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:2004
Editura: SPRINGER LONDON
Colecția Springer
Seria Advanced Information and Knowledge Processing
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1. Importance of Multi-database Mining.- 1.1 Introduction.- 1.2 Role of Multi-database Mining in Real-world Applications.- 1.3 Multi-database Mining Problems.- 1.4 Differences Between Mono- and Multi-database Mining.- 1.5 Evolution of Multi-database Mining.- 1.6 Limitations of Previous Techniques.- 1.7 Process of Multi-database Mining.- 1.8 Features of the Defined Process.- 1.9 Major Contributions of This Book.- 1.10 Organization of the Book.- 2. Data Mining and Multi-database Mining.- 2.1 Introduction.- 2.2 Knowledge Discovery in Databases.- 2.3 Association Rule Mining.- 2.4 Research into Mining Mono-databases.- 2.5 Research into Mining Multi-databases.- 2.6 Summary.- 3. Local Pattern Analysis.- 3.1 Introduction.- 3.2 Previous Multi-database Mining Techniques.- 3.3 Local Patterns.- 3.4 Local Instance Analysis Inspired by Competition in Sports.- 3.5 The Structure of Patterns in Multi-database Environments.- 3.6 Effectiveness of Local Pattern Analysis.- 3.7 Summary.- 4. Identifying Quality Knowledge.- 4.1 Introduction.- 4.2 Problem Statement.- 4.3 Nonstandard Interpretation.- 4.4 Proof Theory.- 4.5 Adding External Knowledge.- 4.6 The Use of the Framework.- 4.7 Summary.- 5. Database Clustering.- 5.1 Introduction.- 5.2 Effectiveness of Classifying.- 5.3 Classifying Databases.- 5.4 Searching for a Good Classification.- 5.5 Algorithm Analysis.- 5.6 Evaluation of Application-independent Database Classification.- 5.7 Summary.- 6. Dealing with Inconsistency.- 6.1 Introduction.- 6.2 Problem Statement.- 6.3 Definitions of Formal Semantics.- 6.4 Weighted Majority.- 6.5 Mastering Local Pattern Sets.- 6.6 Examples of Synthesizing Local Pattern Sets.- 6.7 A Syntactic Characterization.- 6.8 Summary.- 7. Identifying High-vote Patterns.- 7.1 Introduction.- 7.2 Illustration of High-votePatterns.- 7.3 Identifying High-vote Patterns.- 7.4 Algorithm Design.- 7.5 Identifying High-vote Patterns Using a Fuzzy Logic Controller.- 7.6 High-vote Pattern Analysis.- 7.7 Suggested Patterns.- 7.8 Summary.- 8. Identifying Exceptional Patterns.- 8.1 Introduction.- 8.2 Interesting Exceptional Patterns.- 8.3 Algorithm Design.- 8.4 Identifying Exceptions with a Fuzzy Logic Controller.- 8.5 Summary.- 9. Synthesizing Local Patterns by Weighting.- 9.1 Introduction.- 9.2 Problem Statement.- 9.3 Synthesizing Rules by Weighting.- 9.4 Improvement of Synthesizing Model.- 9.5 Algorithm Analysis.- 9.6 Summary.- 10. Conclusions and Future Work.- 10.1 Conclusions.- 10.2 Future Work.- References.
Recenzii
From the reviews:
"The book contains the latest on research in database multi-mining (32 papers published after 2000) and offers for consideration a local-pattern analysis framework for pattern discovery from multiple data sources. Starting from the local pattern in multiple data bases, the authors propose … a new pattern named ‘high-vote’ pattern based on statistical analysis of vote ratio received by a pattern from each branch of the company." (Silviu Craciunas, Zentralblatt MATH, Vol. 1067, 2005)
"The book contains the latest on research in database multi-mining (32 papers published after 2000) and offers for consideration a local-pattern analysis framework for pattern discovery from multiple data sources. Starting from the local pattern in multiple data bases, the authors propose … a new pattern named ‘high-vote’ pattern based on statistical analysis of vote ratio received by a pattern from each branch of the company." (Silviu Craciunas, Zentralblatt MATH, Vol. 1067, 2005)
Caracteristici
The only book that covers the emerging topic of multiple database mining Focuses on developing new techniques for multi-database mining Urgent need to analyse data in multi-databases as a great deal of multi-databases are widely used in organisations Includes supplementary material: sn.pub/extras