Cantitate/Preț
Produs

Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications

Editat de Mayuri Mehta, Kalpdrum Passi, Indranath Chatterjee, Rajan Patel
en Limba Engleză Paperback – 7 oct 2024
Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals.
The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery.
This book is intended for data scientists, academicians, and industry professionals in the healthcare sector.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 31688 lei  6-8 săpt.
  CRC Press – 7 oct 2024 31688 lei  6-8 săpt.
Hardback (1) 104528 lei  6-8 săpt.
  CRC Press – 22 dec 2021 104528 lei  6-8 săpt.

Preț: 31688 lei

Preț vechi: 35888 lei
-12% Nou

Puncte Express: 475

Preț estimativ în valută:
6066 6242$ 5114£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367696634
ISBN-10: 0367696630
Pagini: 362
Ilustrații: 190
Dimensiuni: 156 x 234 mm
Greutate: 0.67 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States

Public țintă

Academic, General, Postgraduate, and Professional

Notă biografică

Mayuri Mehta is a passionate learner, teacher and researcher. She is working as a Professor in the Department of Computer Engineering, Sarvajanik College of Engineering and Technology, Surat, India. She received her Ph.D. in Computer Engineering from Sardar Vallabhbhai National Institute of Technology (SVNIT), India. Her areas of teaching and research include Data Science, Machine Learning & Deep Learning, Health Informatics, Computer Algorithms, and Python Programming. She has worked on several academic assignments in collaboration with professors of universities across the globe. Her 20 years of professional experience includes several academic and research achievements along with administrative and organizational capabilities. She has also co-edited a book titled "Tracking and Preventing Diseases using Artificial Intelligence". With the noble intention of applying her technical knowledge for societal impact, she is working on several research projects in the Healthcare domain in association with doctors doing private practice and doctors of Medical Colleges, which reflect her research outlook. She is an active member of professional bodies such as IEEE, Computer Society of India (CSI) and Indian Society for Technical Education (ISTE).
Kalpdrum Passi received his Ph.D. in Parallel Numerical Algorithms from Indian Institute of Technology, Delhi, India in 1993. He is an Associate Professor, Department of Mathematics & Computer Science, at Laurentian University, Ontario, Canada. He has published many papers on Parallel Numerical Algorithms in international journals and conferences. He has collaborative work with faculty in Canada and US and the work was tested on the CRAY XMP’s and CRAY YMP’s. He transitioned his research to web technology, and more recently has been involved in machine learning and data mining applications in bioinformatics, social media and other data science areas. His research in bioinformatics has been on improving the accuracy of predicting diseases such as different types of cancer using microarray data. He has published several papers related to prediction of cancer using microarray data and epigenomic data. He obtained funding from NSERC and Laurentian University for his research. He is a member of the ACM and IEEE Computer Society.
Indranath Chatterjee is working as a Professor in the Department of Computer Engineering at Tongmyong University, Busan, South Korea. He received his Ph. D. in Computational Neuroscience from the Department of Computer Science, University of Delhi, Delhi, India. His research areas include Computational Neuroscience, Medical Imaging, Data Science, Machine Learning, and Computer Vision. He is the author of four textbooks on computer science and published numerous scientific articles in renowned international journals and conferences. He is currently serving as a Chief Section Editor of the Neuroscience Research Notes journal and serving as a member of the Advisory board and Editorial board of various international journals and Open-Science organizations worldwide. He is presently working on several projects of government & non-government organizations as PI/co-PI, related to medical imaging and machine learning for a broader societal impact, in collaboration with more than 15 universities globally. He is an active professional member of the Association of Computing Machinery (ACM, USA), Organization of Human Brain Mapping (OHBM, USA), Federations of European Neuroscience Society (FENS, Belgium), International Association of Neuroscience (IAN, India), and International Neuroinformatics Coordinating Facility (INCF, Sweden).
Rajan Patel is currently working as a Professor at Gandhinagar Institute of Technology, Gandhinagar, Gujarat, India. He received a Ph.D. degree in Computer Engineering from R. K. University, Rajkot, India and M.Tech. in Computer Engineering from S. V. National Institute of Technology (NIT), Surat, India. He has more than 16 years of teaching experience in the field of Computer Science and Engineering and research experience mainly in the domain of Networking, Security and Intelligent Applications. He has more than 51 collaborative publications in journals and conferences, and presented 17 articles in National/International conferences including IEEE, Science Direct, Springer, Elsevier. As a coauthor, he has published an edited International book entitled "Data Science and Intelligent Applications" in Springer's LNDECT series. He also worked for ISEAP sponsored MHRD funded project during his Post graduation period at NIT, Surat, India. He is a member of professional bodies CSI, ISTE and UACEE. He has also received numerous awards, honors and certificates of excellence. His main area of interest includes AI, Data Science, and Intelligent Communication and its Security.

Cuprins

Section I: Big Data in Healthcare. 1. Healthcare Systems: A Design Overview of System and Technology. 2. An Overview of Big Data Applications in Healthcare: Opportunities and Challenges. 3. Clinical Decision Support Systems and Computational Intelligence for Healthcare Industry. 4. Proposed Intelligent Software System for Healthcare Systems using Machine Learning. Section II: Medical Imaging. 5. Diagnosis of Schizophrenia: A Study on Clinical and Computational Aspect. 6. Artificial Intelligence in Medical Imaging. 7. Integrated Neuroinformatics: Analytics and Application. 8. A Computer detection system (CDS) for fast and quick detection of lung cancer using Digital Image Processing. Section III: Computational Genomics. 9. Improved Prediction of Gene Expression of Epigenomics Data of Lung Cancer Using Machine Learning and Deep Learning Models. 10. Genetic Study of Schizophrenia and Role of Computational Genomics in Mental Healthcare. 11. Prediction of disease-lncRNA associations via Machine Learning and Big Data approaches. Section IV: Applications on Clinical Diagnosis. 12. On Tracking Slow modulations of Effective Connectivity for Early Detection of Epilepsy: Methods. 13. Application to Predict Type-II Diabetes using IoT Rural Healthcare Monitoring System. Section V: Issues in Security and Informatics in Healthcare. 14. A conceptual model for assessing security and privacy risks in healthcare information infrastructures: the CUREX approach. 15. Data science in health informatics.

Descriere

This book focuses on automated analytical techniques for healthcare applications used to extract knowledge from a large amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals.