Cantitate/Preț
Produs

L-Functions and Automorphic Forms: LAF, Heidelberg, February 22-26, 2016: Contributions in Mathematical and Computational Sciences, cartea 10

Editat de Jan Hendrik Bruinier, Winfried Kohnen
en Limba Engleză Hardback – 23 feb 2018
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. 
The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. 
The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63345 lei  6-8 săpt.
  Springer International Publishing – 4 iun 2019 63345 lei  6-8 săpt.
Hardback (1) 88481 lei  6-8 săpt.
  Springer International Publishing – 23 feb 2018 88481 lei  6-8 săpt.

Din seria Contributions in Mathematical and Computational Sciences

Preț: 88481 lei

Preț vechi: 107904 lei
-18% Nou

Puncte Express: 1327

Preț estimativ în valută:
16939 17420$ 14052£

Carte tipărită la comandă

Livrare economică 18 februarie-04 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319697116
ISBN-10: 3319697110
Pagini: 288
Ilustrații: VIII, 366 p. 22 illus.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.7 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Contributions in Mathematical and Computational Sciences

Locul publicării:Cham, Switzerland

Cuprins

1. P. Anamby and S. Das: Sturm-like bound for square-free Fourier coefficients.- 2. N. Andersen, K. Bringmann and K. Rolen: Images of Maass-Poincaré series in the lower half-plane.- 3. S. Börcherer: On denominators of values of certain L-functions when twisted by characters.- 4. H. Darmon, A. Lauder, V. Rotger: First order p-adic deformations of weight one newforms.- 5. S. Ehlen, N-P. Skoruppa: Computing invariants of the Weil representation.- 6. W-T. Gan: The metaplectic tensor product as an instance of Langlands functoriality.- 7. M. Grados and A. von Pippich: On scattering constants of congruence subgroups.- 8. B. Kane and S.H. Man: The Bruinier-Funke pairing and the orthogonal complement of unary theta functions.- 9. W. Kohnen and J. Sengupta: Bounds for Fourier-Jacobi coefficients of Siegel cusp forms of degree two.- 10. Y. Li: Harmonic Eisenstein series of weight one.- 11. A. Pitale, S. Abhishek and R. Schmidt: A note on the growth of nearly holomorphic vector-valued Siegel modular forms.- 12. A. Raghuram and G. Sachdeva: Critical values of L-functions for GL3 x GL1 over a totally real field.- 13. M. Raum: Indecomposable Harish-Chandara modules for Jacobi groups.- 14. M. Rösner and R. Weissauer: Multiplicity one for certain paramodular forms of genus two.- 15. H.C. Siu and K. Soundararajan: Restrictions of Hecke eigenforms to horocycles.- 16. M. Woodbury: On the triple product formula: Real local calculations.- 17. C. Alfes-Neumann: An introduction to the theory of harmonic Maass forms.- 18. S. Börcherer: Elementary Introduction to p-adic Siegel Modular Forms.- 19. E. Hofmann: Liftings and Borcherds products.

Textul de pe ultima copertă

This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016.  The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. 
The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.