Lagrange-type Functions in Constrained Non-Convex Optimization: Applied Optimization, cartea 85
Autor Alexander M. Rubinov, Xiao-qi Yangen Limba Engleză Paperback – 22 noi 2013
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 622.36 lei 6-8 săpt. | |
Springer Us – 22 noi 2013 | 622.36 lei 6-8 săpt. | |
Hardback (1) | 630.17 lei 6-8 săpt. | |
Springer Us – 30 noi 2003 | 630.17 lei 6-8 săpt. |
Din seria Applied Optimization
- Preț: 123.98 lei
- 15% Preț: 624.92 lei
- 18% Preț: 1196.10 lei
- 20% Preț: 951.60 lei
- 15% Preț: 619.96 lei
- 15% Preț: 628.11 lei
- 18% Preț: 1084.81 lei
- 15% Preț: 620.47 lei
- 15% Preț: 625.40 lei
- 15% Preț: 622.52 lei
- 20% Preț: 966.53 lei
- 15% Preț: 631.74 lei
- 18% Preț: 1198.25 lei
- 18% Preț: 926.75 lei
- 18% Preț: 1205.14 lei
- 18% Preț: 1191.03 lei
- 18% Preț: 1199.94 lei
- 18% Preț: 1191.67 lei
- 18% Preț: 1195.96 lei
- 18% Preț: 931.82 lei
- 15% Preț: 583.08 lei
- 15% Preț: 635.87 lei
- 18% Preț: 925.98 lei
- 18% Preț: 921.99 lei
- 15% Preț: 624.28 lei
- 15% Preț: 624.92 lei
- 15% Preț: 623.34 lei
Preț: 622.36 lei
Preț vechi: 732.19 lei
-15% Nou
Puncte Express: 934
Preț estimativ în valută:
119.12€ • 124.15$ • 99.16£
119.12€ • 124.15$ • 99.16£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461348214
ISBN-10: 1461348218
Pagini: 304
Ilustrații: XIV, 286 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Springer Us
Colecția Springer
Seria Applied Optimization
Locul publicării:New York, NY, United States
ISBN-10: 1461348218
Pagini: 304
Ilustrații: XIV, 286 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Springer Us
Colecția Springer
Seria Applied Optimization
Locul publicării:New York, NY, United States
Public țintă
ResearchRecenzii
From the reviews:
"Lagrange and penalty functions provide a powerful approach for study of constrained optimization problems. … The book gives a systematic and unified presentation of many important results that have been obtained in this area during last several years. … The book develops a unified approach to duality and penalization and to convergence analysis of the first and second order optimality conditions. … A number of impressive new results on the existence of an exact penalty parameter have been obtained in the book." (Vladimir Gaitsgory, gazette The Australian Mathematical Society, Vol. 32 (4), 2005)
"In the monograph a whole optimization theory is developed … . Besides a large number of theoretical statements, results of numerical experiments showing usefulness of the presented approach are also reported … . It is shown that a much larger class of optimization problems than that of the convex ones allow for a thorough theoretical analysis and deep results. … The monograph can be recommended to researchers in mathematical optimization being in interested in nonconvex problems." (Stephan Dempe, OR-News, Issue 23, 2005)
"Lagrange and penalty functions provide a powerful approach for study of constrained optimization problems. … The book gives a systematic and unified presentation of many important results that have been obtained in this area during last several years. … The book develops a unified approach to duality and penalization and to convergence analysis of the first and second order optimality conditions. … A number of impressive new results on the existence of an exact penalty parameter have been obtained in the book." (Vladimir Gaitsgory, gazette The Australian Mathematical Society, Vol. 32 (4), 2005)
"In the monograph a whole optimization theory is developed … . Besides a large number of theoretical statements, results of numerical experiments showing usefulness of the presented approach are also reported … . It is shown that a much larger class of optimization problems than that of the convex ones allow for a thorough theoretical analysis and deep results. … The monograph can be recommended to researchers in mathematical optimization being in interested in nonconvex problems." (Stephan Dempe, OR-News, Issue 23, 2005)