Land Cover Classification of Remotely Sensed Images: A Textural Approach
Autor S. Jenickaen Limba Engleză Paperback – 11 mar 2022
The first chapter discusses the important terminologies in remote sensing, basics of land cover classification, types of remotely sensed images and their characteristics. The second chapter introduces the texture and a detailed literature survey citing papers related to texture analysis and image processing. The third chapter describes basic texture models for gray level images and multivariate texture models for color or remotely sensed images with relevant Matlab source codes. The fourth chapter focuses on texture-based classification and texture-based segmentation. The Matlab source codes for performing supervised texture based segmentation using basic texture models and minimum distance classifier are listed. The fifth chapter describes supervised and unsupervised classifiers. The experimental results obtained using a basic texture model (Uniform Local Binary Pattern) with the classifiers described earlier are discussed through the relevant Matlab source codes. The sixth chapter describes land cover classification procedure using multivariate (statistical and spectral) texture models and minimum distance classifier with Matlab source codes. A few performance metrics are also explained. The seventh chapter explains how texture based segmentation and land cover classification are performed using the hidden Markov model with relevant Matlab source codes. The eighth chapter gives an overview of spatial data analysis and other existing land cover classification methods. The ninth chapter addresses the research issues and challenges associated with land cover classification using textural approaches.
This book is useful for undergraduates in Computer Science and Civil Engineering and postgraduates who plan to do research or project work in digital image processing. The book can serve as a guide to those who narrow down their research to processing remotely sensed images. It addresses a wide range of texture models and classifiers. The book not only guides but aids the reader in implementing the concepts through the Matlab source codes listed. In short, the book will be a valuable resource for growing academicians to gain expertise in their area of specialization and students who aim at gaining in-depth knowledge through practical implementations. The exercises given under texture based segmentation (excluding land cover classification exercises) can serve as lab exercises for the undergraduate students who learn texture based image processing.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 811.42 lei 6-8 săpt. | |
Springer International Publishing – 11 mar 2022 | 811.42 lei 6-8 săpt. | |
Hardback (1) | 769.23 lei 3-5 săpt. | |
Springer International Publishing – 11 mar 2021 | 769.23 lei 3-5 săpt. |
Preț: 811.42 lei
Preț vechi: 989.53 lei
-18% Nou
Puncte Express: 1217
Preț estimativ în valută:
155.36€ • 161.78$ • 128.90£
155.36€ • 161.78$ • 128.90£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030665975
ISBN-10: 3030665976
Ilustrații: XV, 176 p. 21 illus., 10 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.28 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3030665976
Ilustrații: XV, 176 p. 21 illus., 10 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.28 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Cuprins
Abstract.- Acknowledgements.- Dedication.- List of Figures.- List of Tables.- List of Symbols and Abreviations.- Chapter 1. Introduction to Remote Sensing.- Chapter 2. Introduction to Texture.- Chapter 3. Literature Survey.- Chapter 4. A Few Existing Basic and Multivariate Texture Models.- Chapter 5. Texture Based Segmentation Using Basic Texture Models.- Chapter 6. Texture Based Segmentation Using LBP with Supervised an Unsupervised Classifiers.- Chapter 7. Texture Based Classification of Remotely Sensed Images.- Chapter 8.Performance Metrics.- List of Publications by Author.- Author's Biography.
Notă biografică
Dr. S. Jenicka completed her under graduation in Computer Science and Engineering at Thiagarajar College of Engineering, Madurai, Tamil Nadu in 1994. Later she finished her post-graduation in the same discipline in 2009 from Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu. She completed a doctorate in Computer Science and Engineering in 2014. Her research work was on ‘Texture based classification of remotely sensed images’. Her interests include Satellite image processing and texture segmentation.
This book is the offspring of the expertise gained by Dr. Jenicka through the research work. She has got several online conference and journal publications with citation index. She has got nearly 13 years of teaching experience in reputed institutions.
Textul de pe ultima copertă
The book introduces two domains namely Remote Sensing and Digital Image Processing. It discusses remote sensing, texture, classifiers, and procedures for performing the texture-based segmentation and land cover classification.
The first chapter discusses the important terminologies in remote sensing, basics of land cover classification, types of remotely sensed images and their characteristics. The second chapter introduces the texture and a detailed literature survey citing papers related to texture analysis and image processing. The third chapter describes basic texture models for gray level images and multivariate texture models for color or remotely sensed images with relevant Matlab source codes. The fourth chapter focuses on texture-based classification and texture-based segmentation. The Matlab source codes for performing supervised texture based segmentation using basic texture models and minimum distance classifier are listed. The fifth chapter describes supervised and unsupervised classifiers. The experimental results obtained using a basic texture model (Uniform Local Binary Pattern) with the classifiers described earlier are discussed through the relevant Matlab source codes. The sixth chapter describes land cover classification procedure using multivariate (statistical and spectral) texture models and minimum distance classifier with Matlab source codes. A few performance metrics are also explained. The seventh chapter explains how texture based segmentation and land cover classification are performed using the hidden Markov model with relevant Matlab source codes. The eighth chapter gives an overview of spatial data analysis and other existing land cover classification methods. The ninth chapter addresses the research issues and challenges associated with land cover classification using textural approaches.
This book is useful for undergraduates in Computer Science and Civil Engineering and postgraduates who plan to do research or project work in digital image processing. The book can serve as a guide to those who narrow down their research to processing remotely sensed images. It addresses a wide range of texture models and classifiers. The book not only guides but aids the reader in implementing the concepts through the Matlab source codes listed. In short, the book will be a valuable resource for growing academicians to gain expertise in their area of specialization and students who aim at gaining in-depth knowledge through practical implementations. The exercises given under texture based segmentation (excluding land cover classification exercises) can serve as lab exercises for the undergraduate students who learn texture based image processing.
The first chapter discusses the important terminologies in remote sensing, basics of land cover classification, types of remotely sensed images and their characteristics. The second chapter introduces the texture and a detailed literature survey citing papers related to texture analysis and image processing. The third chapter describes basic texture models for gray level images and multivariate texture models for color or remotely sensed images with relevant Matlab source codes. The fourth chapter focuses on texture-based classification and texture-based segmentation. The Matlab source codes for performing supervised texture based segmentation using basic texture models and minimum distance classifier are listed. The fifth chapter describes supervised and unsupervised classifiers. The experimental results obtained using a basic texture model (Uniform Local Binary Pattern) with the classifiers described earlier are discussed through the relevant Matlab source codes. The sixth chapter describes land cover classification procedure using multivariate (statistical and spectral) texture models and minimum distance classifier with Matlab source codes. A few performance metrics are also explained. The seventh chapter explains how texture based segmentation and land cover classification are performed using the hidden Markov model with relevant Matlab source codes. The eighth chapter gives an overview of spatial data analysis and other existing land cover classification methods. The ninth chapter addresses the research issues and challenges associated with land cover classification using textural approaches.
This book is useful for undergraduates in Computer Science and Civil Engineering and postgraduates who plan to do research or project work in digital image processing. The book can serve as a guide to those who narrow down their research to processing remotely sensed images. It addresses a wide range of texture models and classifiers. The book not only guides but aids the reader in implementing the concepts through the Matlab source codes listed. In short, the book will be a valuable resource for growing academicians to gain expertise in their area of specialization and students who aim at gaining in-depth knowledge through practical implementations. The exercises given under texture based segmentation (excluding land cover classification exercises) can serve as lab exercises for the undergraduate students who learn texture based image processing.
Caracteristici
The book helps the reader in implementing the concepts through the Matlab source codes listed The book is immensely useful for Computer Science and Civil Engineering undergraduates as well post-graduates who plan to do research or project work in digital image processing or in particular satellite image processing The book is self explanatory and serves as a step by step guide to the reader