Cantitate/Preț
Produs

Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension: Probability and Its Applications

Editat de Abraham Boyarsky, Pawel Gora
en Limba Engleză Hardback – 23 sep 1997
A hundred years ago it became known that deterministic systems can exhibit very complex behavior. By proving that ordinary differential equations can exhibit strange behavior, Poincare undermined the founda­ tions of Newtonian physics and opened a window to the modern theory of nonlinear dynamics and chaos. Although in the 1930s and 1940s strange behavior was observed in many physical systems, the notion that this phenomenon was inherent in deterministic systems was never suggested. Even with the powerful results of S. Smale in the 1960s, complicated be­ havior of deterministic systems remained no more than a mathematical curiosity. Not until the late 1970s, with the advent of fast and cheap comput­ ers, was it recognized that chaotic behavior was prevalent in almost all domains of science and technology. Smale horseshoes began appearing in many scientific fields. In 1971, the phrase 'strange attractor' was coined to describe complicated long-term behavior of deterministic systems, and the term quickly became a paradigm of nonlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools are analytic and measure-theoretic rather than geometric. For example, in throwing a die, we can study the limiting behavior of the system by viewing the long-term behavior of individual orbits. This would reveal incomprehensibly complex behavior. Or we can shift our perspective: Instead of viewing the long-term outcomes themselves, we can view the probabilities of these outcomes. This is the measure-theoretic approach taken in this book.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64643 lei  6-8 săpt.
  Birkhäuser Boston – noi 2012 64643 lei  6-8 săpt.
Hardback (1) 65231 lei  6-8 săpt.
  Birkhäuser Boston – 23 sep 1997 65231 lei  6-8 săpt.

Din seria Probability and Its Applications

Preț: 65231 lei

Preț vechi: 76742 lei
-15% Nou

Puncte Express: 978

Preț estimativ în valută:
12485 12867$ 10541£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817640033
ISBN-10: 0817640037
Pagini: 400
Ilustrații: XVI, 400 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.75 kg
Ediția:1997
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Probability and Its Applications

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

1. Introduction.- 1.1 Overview.- 1.2 Examples of Piecewise Monotonic Transformations and the Density Functions of Absolutely Continuous Invariant Measures.- 2. Preliminaries.- 2.1 Review of Measure Theory.- 2.2 Spaces of Functions and Measures.- 2.3 Functions of Bounded Variation in One Dimension.- 2.4 Conditional Expectations.- Problems for Chapter 2.- 3. Review of Ergodic Theory.- 3.1 Measure-Preserving Transformations.- 3.2 Recurrence and Ergodicity.- 3.3 The Birkhoff Ergodic Theorem.- 3.4 Mixing and Exactness.- 3.5 The Spectrum of the Koopman Operator and the Ergodic Properties of ?.- 3.6 Basic Constructions of Ergodic Theory.- 3.7 Infinite and Finite Invariant Measures.- Problems for Chapter 3.- 4. The Frobenius—Perron Operator.- 4.1 Motivation.- 4.2 Properties of the Frobenius—Perron Operator.- 4.3 Representation of the Frobenius—Perron Operator.- Problems for Chapter 4.- 5. Absolutely Continuous Invariant Measures.- 5.1 Introduction.- 5.2 Existence of Absolutely Continuous Invariant Measures.- 5.3 Lasota—Yorke Example of a Transformation with-out Absolutely Continuous Invariant Measure.- 5.4 Rychlik’s Theorem for Transformations with Countably Many Branches.- Problems for Chapter 5.- 6. Other Existence Results.- 6.1 The Folklore Theorem.- 6.2 Rychlik’s Theorem for C1+? Transformations of the Interval.- 6.3 Piecewise Convex Transformations.- Problems for Chapter 6.- 7. Spectral Decomposition of the Frobenius—Perron Operator.- 7.1 Theorem of Ionescu—Tulcea and Marinescu.- 7.2 Quasi-Compactness of Frobenius—Perron Operator.- 7.3 Another Approach to Spectral Decomposition: Constrictiveness.- Problems for Chapter 7.- 8. Properties of Absolutely Continuous Invariant Measures.- 8.1 Preliminary Results.- 8.2 Support of an Invariant Density.- 8.3 Speedof Convergence of the Iterates of Pn?f.- 8.4 Bernoulli Property.- 8.5 Central Limit Theorem.- 8.6 Smoothness of the Density Function.- Problems for Chapter 8.- 9. Markov Transformations.- 9.1 Definitions and Notation.- 9.2 Piecewise Linear Markov Transformations and the Matrix Representation of the Frobenius—Perron Operator.- 9.3 Eigenfunctions of Matrices Induced by Piecewise Linear Markov Transformations.- 9.4 Invariant Densities of Piecewise Linear Markov Transformations.- 9.5 Irreducibility and Primitivity of Matrix Representations of Frobenius—Perron Operators.- 9.6 Bounds on the Number of Ergodic Absolutely Continuous Invariant Measures.- 9.7 Absolutely Continuous Invariant Measures that Are Maximal.- Problems for Chapter 9.- 10. Compactness Theorem and Approximation of Invariant Densities.- 10.1 Introduction.- 10.2 Strong Compactness of Invariant Densities.- 10.3 Approximation by Markov Transformations.- 10.4 Application to Matrices: Compactness of Eigenvectors for Certain Non-Negative Matrices.- 11. Stability of Invariant Measures.- 11.1 Stability of a Linear Stochastic Operator.- 11.2 Deterministic Perturbations of Piecewise Expanding Transformations.- 11.3 Stochastic Perturbations of Piecewise Expanding Transformations.- Problems for Chapter 11.- 12. The Inverse Problem for the Frobenius—Perron Equation.- 12.1 The Ershov—Malinetskii Result.- 12.2 Solving the Inverse Problem by Matrix Methods.- 13. Applications.- 13.1 Application to Random Number Generators.- 13.2 Why Computers Like Absolutely Continuous Invariant Measures.- 13.3 A Model for the Dynamics of a Rotary Drill.- 13.4 A Dynamic Model for the Hipp Pendulum Regulator.- 13.5 Control of Chaotic Systems.- 13.6 Kolodziej’s Proof of Poncelet’s Theorem.- Problems for Chapter 13.- Solutions toSelected Problems.

Recenzii

"Well written with ample examples and exercises… It fills an important gap in the literature."
—Journal of the Indian Inst. of Science
"The book provides a personal view on invariant measures and dynamical systems in one dimension. It is given a detailed study of the piecewise linear transformations under another spirit than that of {W. Doeblin} developed in the commemorative volume [Doeblin and modern probability. Proceedings of the Doeblin conference "50 years after Doeblin: Developments in the theory of Markov chains, Markov processes and sums of independent random variables'', Contemporary Mathematics 149 (1993; articles are reviewed individually in Zbl )]. The book contains 13 chapters. Some titles are as follows: Spectral decomposition of the Frobenius-Perron operator, Markov transformations, Compactness theorem and Approximation of invariant densities, Stability of invariant measures, The inverse problem for the Frobenius-Perron equation and others. The style of the book is clear with good didactical perspectives for those who wish to study dynamical systems in connection with measure theory and ergodic theory. Finally, the book is a valuable contribution to the topic of Dynamical Systems."
—Zentralblatt Math