Cantitate/Preț
Produs

Learning Control: Applications in Robotics and Complex Dynamical Systems

Editat de Dan Zhang, Bin Wei
en Limba Engleză Paperback – 9 dec 2020
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length.

  • Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics
  • Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems
  • Demonstrates computational techniques for control systems
  • Covers iterative learning impedance control in both human-robot interaction and collaborative robots
Citește tot Restrânge

Preț: 90690 lei

Preț vechi: 122794 lei
-26% Nou

Puncte Express: 1360

Preț estimativ în valută:
17356 18029$ 14417£

Carte tipărită la comandă

Livrare economică 27 ianuarie-10 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128223147
ISBN-10: 0128223146
Pagini: 280
Ilustrații: 110 illustrations (30 in full color)
Dimensiuni: 152 x 229 x 20 mm
Greutate: 0.38 kg
Editura: ELSEVIER SCIENCE

Cuprins

  1. A high-level design process for neural-network controls through a framework of human personalities
  2. Cognitive load estimation for adaptive human–machine system automation
  3. Comprehensive error analysis beyond system innovations in Kalman filtering
  4. Nonlinear control
  5. Deep learning approaches in face analysis
  6. Finite multi-dimensional generalized Gamma Mixture Model Learning for feature selection
  7. Variational learning of finite shifted scaled Dirichlet mixture models
  8. From traditional to deep learning: Fault diagnosis for autonomous vehicles
  9. Controlling satellites with reaction wheels
  10. Vision dynamics-based learning control