Learning Theory: 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro, Italy, June 27-30, 2005, Proceedings: Lecture Notes in Computer Science, cartea 3559
Editat de Peter Auer, Ron Meiren Limba Engleză Paperback – 20 iun 2005
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 665.93 lei
Preț vechi: 832.42 lei
-20% Nou
Puncte Express: 999
Preț estimativ în valută:
127.44€ • 131.48$ • 107.86£
127.44€ • 131.48$ • 107.86£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540265566
ISBN-10: 3540265562
Pagini: 712
Ilustrații: XII, 692 p.
Dimensiuni: 155 x 235 x 37 mm
Greutate: 0.98 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540265562
Pagini: 712
Ilustrații: XII, 692 p.
Dimensiuni: 155 x 235 x 37 mm
Greutate: 0.98 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Learning to Rank.- Ranking and Scoring Using Empirical Risk Minimization.- Learnability of Bipartite Ranking Functions.- Stability and Generalization of Bipartite Ranking Algorithms.- Loss Bounds for Online Category Ranking.- Boosting.- Margin-Based Ranking Meets Boosting in the Middle.- Martingale Boosting.- The Value of Agreement, a New Boosting Algorithm.- Unlabeled Data, Multiclass Classification.- A PAC-Style Model for Learning from Labeled and Unlabeled Data.- Generalization Error Bounds Using Unlabeled Data.- On the Consistency of Multiclass Classification Methods.- Sensitive Error Correcting Output Codes.- Online Learning I.- Data Dependent Concentration Bounds for Sequential Prediction Algorithms.- The Weak Aggregating Algorithm and Weak Mixability.- Tracking the Best of Many Experts.- Improved Second-Order Bounds for Prediction with Expert Advice.- Online Learning II.- Competitive Collaborative Learning.- Analysis of Perceptron-Based Active Learning.- A New Perspective on an Old Perceptron Algorithm.- Support Vector Machines.- Fast Rates for Support Vector Machines.- Exponential Convergence Rates in Classification.- General Polynomial Time Decomposition Algorithms.- Kernels and Embeddings.- Approximating a Gram Matrix for Improved Kernel-Based Learning.- Learning Convex Combinations of Continuously Parameterized Basic Kernels.- On the Limitations of Embedding Methods.- Leaving the Span.- Inductive Inference.- Variations on U-Shaped Learning.- Mind Change Efficient Learning.- On a Syntactic Characterization of Classification with a Mind Change Bound.- Unsupervised Learning.- Ellipsoid Approximation Using Random Vectors.- The Spectral Method for General Mixture Models.- On Spectral Learning of Mixtures of Distributions.- From Graphs to Manifolds – Weak andStrong Pointwise Consistency of Graph Laplacians.- Towards a Theoretical Foundation for Laplacian-Based Manifold Methods.- Generalization Bounds.- Permutation Tests for Classification.- Localized Upper and Lower Bounds for Some Estimation Problems.- Improved Minimax Bounds on the Test and Training Distortion of Empirically Designed Vector Quantizers.- Rank, Trace-Norm and Max-Norm.- Query Learning, Attribute Efficiency, Compression Schemes.- Learning a Hidden Hypergraph.- On Attribute Efficient and Non-adaptive Learning of Parities and DNF Expressions.- Unlabeled Compression Schemes for Maximum Classes.- Economics and Game Theory.- Trading in Markovian Price Models.- From External to Internal Regret.- Separation Results for Learning Models.- Separating Models of Learning from Correlated and Uncorrelated Data.- Asymptotic Log-Loss of Prequential Maximum Likelihood Codes.- Teaching Classes with High Teaching Dimension Using Few Examples.- Open Problems.- Optimum Follow the Leader Algorithm.- The Cross Validation Problem.- Compute Inclusion Depth of a Pattern.