Lectures on Hyponormal Operators: Operator Theory: Advances and Applications, cartea 39
Autor Mihai Putinar, Mircea Martinen Limba Engleză Paperback – 2 iun 2012
Din seria Operator Theory: Advances and Applications
- 18% Preț: 890.54 lei
- 20% Preț: 574.08 lei
- 18% Preț: 1127.60 lei
- 15% Preț: 643.34 lei
- 18% Preț: 961.55 lei
- Preț: 395.63 lei
- 15% Preț: 648.05 lei
- 18% Preț: 737.71 lei
- 15% Preț: 653.14 lei
- Preț: 384.48 lei
- 15% Preț: 644.82 lei
- 15% Preț: 645.79 lei
- Preț: 402.00 lei
- 15% Preț: 650.04 lei
- 15% Preț: 660.83 lei
- 15% Preț: 639.08 lei
- 18% Preț: 940.09 lei
- 15% Preț: 648.05 lei
- Preț: 388.90 lei
- 18% Preț: 728.11 lei
- 20% Preț: 574.08 lei
- 15% Preț: 645.79 lei
- 18% Preț: 1128.89 lei
- 15% Preț: 646.11 lei
- 15% Preț: 648.89 lei
- 18% Preț: 745.33 lei
- 18% Preț: 1124.47 lei
- 15% Preț: 647.08 lei
- 15% Preț: 662.62 lei
- Preț: 392.75 lei
- 18% Preț: 960.96 lei
- 15% Preț: 646.43 lei
- 18% Preț: 738.37 lei
Preț: 391.40 lei
Nou
Puncte Express: 587
Preț estimativ în valută:
74.90€ • 77.73$ • 62.61£
74.90€ • 77.73$ • 62.61£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034874687
ISBN-10: 3034874685
Pagini: 308
Ilustrații: 304 p.
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
ISBN-10: 3034874685
Pagini: 308
Ilustrații: 304 p.
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
I: Subnormal operators.- 1. Elementary properties and examples.- 2. Characterization of subnormality.- 3. The minimal normal extension.- 4. Putnam’s inequality.- 5. Supplement: Positive definite kernels.- Notes.- Exercises.- II: Hyponormal operators and related objects.- 1. Pure hyponormal operators.- 2. Examples of hyponormal operators.- 3. Contractions associated to hyponormal operators.- 4. Unitary invariants.- Notes.- Exercises.- III: Spectrum, resolvent and analytic functional calculus.- 1. The spectrum.- 2. Estimates of the resolvent function.- 3. A sharpened analytic functional calculus.- 4. Generalized scalar extensions.- 5. Local spectral properties.- 6. Supplement: Pseudo-analytic extensions of smooth functions.- Notes.- Exercises.- IV: Some invariant subspaces for hyponormal operators.- 1. Preliminaries.- 2. Scott Brown’s theorem.- 3. Hyperinvariant subspaces for subnormal operators.- 4. The lattice of invariant subspaces.- Notes.- Exercises.- V: Operations with hyponormal operators.- 1. Operations.- 2. Spectral mapping results.- Notes.- Exercises.- VI: The basic inequalities.- 1. Berger and Shaw’s inequality.- 2. Putnam’s inequality.- 3. Commutators and absolute continuity of self-adjoint operators.- 4. Kato’s inequality.- 5. Supplement: The structure of absolutely continuous self-adjoint operators.- Notes.- Exercises.- VII: Functional models.- 1. The Hilbert transform of vector valued functions.- 2. The singular integral model.- 3. The two-dimensional singular integral model.- 4. The Toeplitz model.- 5. Supplement: One dimensional singular integral operators.- Notes.- Exercises.- VIII: Methods of perturbation theory.- 1. The phase shift.- 2. Abstract symbol and Friedrichs operations.- 3. The Birman — Kato — Rosenblum scattering theory.- 4.Boundary behaviour of compressed resolvents.- 5. Supplement: Integral representations for a class of analytic functions defined in the upper half-plane.- Notes.- Exercises.- IX: Mosaics.- 1. The phase operator.- 2. Determining functions.- 3. The principal function.- 4. Symbol homomorphisms and mosaics.- 5. Properties of the mosaic.- 6. Supplement: A spectral mapping theorem for the numerical range.- Notes.- Exercises.- X: The principal function.- 1. Bilinear forms with the collapsing property.- 2. Smooth functional calculus modulo trace-class operators and the trace formula.- 3. The properties of the principal function.- 4. Berger’s estimates.- Notes.- Exercises.- XI: Operators with one dimensional self-commutator.- 1. The global local resolvent.- 2. The kernel function.- 3. A functional model.- 4. The spectrum and the principal function.- Notes.- Exercises.- XII: Applications.- 1. Pairs of unbounded self-adjoint operators.- 2. The Szego limit theorem.- 3. A two dimensional moment problem.- Notes.- Exercises.- References.- Notation and symbols.