Lectures on Topics in Finite Element Solution of Elliptic Problems: Tata Institute Lectures on Mathematics and Physics
Note de G. Vijayasundaram Autor B. Mercieren Limba Engleză Paperback – 31 oct 1980
Preț: 451.10 lei
Preț vechi: 563.87 lei
-20% Nou
Puncte Express: 677
Preț estimativ în valută:
86.35€ • 90.54$ • 71.34£
86.35€ • 90.54$ • 71.34£
Carte tipărită la comandă
Livrare economică 27 ianuarie-01 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540095439
ISBN-10: 3540095438
Pagini: 204
Dimensiuni: 178 x 254 x 11 mm
Greutate: 0.36 kg
Ediția:1979
Editura: Springer
Colecția Springer
Seria Tata Institute Lectures on Mathematics and Physics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540095438
Pagini: 204
Dimensiuni: 178 x 254 x 11 mm
Greutate: 0.36 kg
Ediția:1979
Editura: Springer
Colecția Springer
Seria Tata Institute Lectures on Mathematics and Physics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchDescriere
THESE
NOTES
SUMMARISE
a
course
on
the
finite
element
solution
of
Elliptic
problems,
which
took
place
in
August
1978,
in
Bangalore.
I
would
like
to
thank
Professor
Ramanathan
without
whom
this
course
would
not
have
been
possible,
and
Dr.
K.
Balagangadharan
who
welcomed
me
in
Bangalore.
Mr.
Vijayasundaram
wrote
these
notes
and
gave
them
a
much
better
form
that
what
I
would
have
been
able
to.
Finally,
I
am
grateful
to
all
the
people
I
met
in
Bangalore
since
they
helped
me
to
discover
the
smile
of
India
and
the
depth
of
Indian
civilization.
Bertrand
Mercier
Paris,
June
7,
1979.
1.
SOBOLEV
SPACES
IN
THIS
CHAPTER
the
notion
of
Sobolev
space
Hl(n)
is
introduced.
We
state
the
Sobolev
imbedding
theorem,
Rellich
theorem,
and
Trace
theorem
for
Hl(n),
without
proof.
For
the
proof
of
the
theorems
the
reader
is
r~ferred
to
ADAMS
[1].
n
1.
1.
NOTATIONS.
Let
n
em
(n
=
1,
~
or
3)
be
an
open
set.
Let
r
denote
the
boundary
of
0,
it
is
lSSlimed
to
be
bounded
and
smooth.
Let
2
2
L
(n)
=
{f:
Jlfl
dx
<
~}
and
n
(f,g)
=
f
fg
dx.
n
Then
L2(n)
is
a
Hilbert
space
with
(•,•)
as
the
scalar
product.