Cantitate/Preț
Produs

Lineare Operatoren in Hilberträumen: Teil II: Anwendungen: Mathematische Leitfäden

Autor Joachim Weidmann
de Limba Germană Paperback – 15 iul 2003
Seit Erscheinen meines Buches "Lineare Operatoren in Hilberträumen" [38] im Jahre 1976 und dessen englischer Übersetzung [39] im Jahre 1980 haben mich viele freundliche Stellungnahmen erreicht. Häufig wurde aber auch bedauert, daß die Anwendungen auf Differentialoperatoren der Quantenme­ chanik und auf die Streutheorie aus Gründen des Umfangs nur sehr un­ befriedigend behandelt werden konnten. Dieser Mangel soll jetzt behoben werden. Dazu ist allerdings die Verteilung des Stoffes auf zwei Bände nötig geworden. Ich bin Herrn Dr. P. Spuhler vom Teubner-Verlag sehr dankbar dafür, daß er diesen Plan von Anfang an unterstützte. Der vorliegende erste Teil soll die Grundlagen der Theorie darstellen; Anwen­ dungen treten hier nur in Form von illustrativen Beispielen auf. Dabei hat es auf Hilberträume zu be­ sich als nützlich erwiesen, sich nicht von Anfang an schränken, sondern, soweit dies die Darstellung nicht zu sehr belastet, auch allgemeinere normierte oder Banachräume zu betrachten. Dieser erste Band sollte deshalb eine für Mathematiker und Physiker nützliche Einführung in die Grundlagen der Funktionalanalysis und der Hilbertraumtheorie bieten, die auch zum Selbststudium geeignet ist. Als Voraussetzung zur Lektüre soll­ te dabei der Stoff der üblichen Anfängervorlesungen für Mathematiker oder Physiker und einige Kenntnisse aus der Funktionentheorie und der Theo­ rie der gewöhnlichen Differentialgleichungen genügen. Eine für diese Zwecke geeignete vollständige Einführung in die Lebesguesche Integration wird in Anhang A gegeben. Der geplante zweite Teil wird dann Anwendungen auf die gewöhnlichen und partiellen Differentialoperatoren der Quantenmechanik einschließlich einer Einführung in die Streutheorie enthalten.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 32619 lei  6-8 săpt.
  Vieweg+Teubner Verlag – 15 iul 2003 32619 lei  6-8 săpt.
  Vieweg+Teubner Verlag – 12 dec 2000 42243 lei  38-45 zile

Din seria Mathematische Leitfäden

Preț: 32619 lei

Nou

Puncte Express: 489

Preț estimativ în valută:
6245 6491$ 5177£

Carte tipărită la comandă

Livrare economică 07-21 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783519022374
ISBN-10: 3519022370
Pagini: 412
Ilustrații: 404 S.
Dimensiuni: 170 x 240 x 22 mm
Greutate: 0.65 kg
Ediția:2003
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Mathematische Leitfäden

Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

Symbolverzeichnis.- 12 Spektrale Teilräume eines selbstadjungierten Operators.- 12.1 Abstrakte Definition der spektralen Teilräume.- 12.2 Dynamische Charakterisierung der spektralen Teilräume.- 12.3 Zur Voraussetzung des RAGE-Theorems.- 13 Sturm-Liouville-Operatoren; Selbstadjungiertheit.- 13.1 Voraussetzungen; minimaler und maximaler Operator.- 13.2 Selbstadjungierte Realisierungen im regulären Fall.- 13.3 Die Weylsche Alternative; Selbstadjungierte Realisierungen im allgemeinen Fall.- 13.4 Grenzpunkt-Grenzkreisfall-Kriterien.- 13.5 Übungen.- 14 Sturm-Liouville-Operatoren; Spektraltheorie.- 14.1 Spektraldarstellung von Sturm-Liouville-Operatoren.- 14.2 Variation der Randbedingung.- 14.3 Approximation durch reguläre Probleme.- 14.4 Die Technik der Prüfertransformation.- 14.5 Absolut stetiges Spektrum.- 14.6 Übungen.- 15 Dirac-Systeme.- 15.1 Minimaler und maximaler Operator.- 15.2 Selbstadjungierte Realisierungen im regulären Fall.- 15.3 Die Weylsche Alternative; Selbstadjungierte Realisierungen im allgemeinen Fall.- 15.4 Grenzpunkt-Grenzkreisfall-Kriterien.- 15.5 Spektraldarstellung von Diracsystemen.- 15.6 Prüfertransformation für Diracsysteme.- 15.7 Absolut stetiges Spektrum.- 16 Periodische Sturm-Liouville-Operatoren und Dirac-Systeme.- 16.1 Diskriminante, Stabilitätsintervalle und Spektrum.- 16.2 Methode der direkten Integrale.- 17 Ein-Teilchen-Schrödingeroperatoren.- 17.1 Vorbemerkungen.- 17.2 Schrödingeroperatoren mit (-?)-kleinen Wechselwirkungen.- 17.3 Eigenwerte von Schrödingeroperatoren.- 17.4 Einfachheit des Grundzustandes.- 17.5 Schrödingeroperatoren mit „großen“ Wechselwirkungen.- 17.6 Übungen.- 18 Separation der Variablen und Kugelflächenfunktionen.- 18.1 Zwei Separationsansätze.- 18.2 Kugelflächenfunktionen.- 18.3 Sphärischsymmetrische Schrödingeroperatoren.- 18.4 Übungen.- 19 Spektraltheorie von N-Teilchen-Schrödingeroperatoren.- 19.1 N-Teilchen-Operatoren.- 19.2 N-Teilchen-Systeme im äußeren Feld; Separation der Schwerpunktsbewegung.- 19.3 Die untere Grenze des wesentlichen Spektrums.- 19.4 Das wesentliche Spektrum von N-Teilchen-Schrödingeroperatoren.- 20 Diracoperatoren.- 20.1 Der freie Diracoperator.- 20.2 Diracoperatoren mit elektrischem Feld.- 20.3 Reduktion sphärisch symmetrischer Operatoren auf Dirac-Systeme.- 21 Grundbegriffe der Streutheorie.- 21.1 Vorbemerkungen.- 21.2 Die Wellenoperatoren.- 21.3 Streuoperator und Streumatrix.- 21.4 Übungen.- 22 Existenz der Wellenoperatoren.- 22.1 Das Cooksche Lemma.- 22.2 Existenz von W±(T2, Tl) für Differentialoperatoren Tl.- 22.3 Spurklassenmethode; der Satz von Pearson.- 22.4 Folgerungen aus dem Satz von Pearson.- 23 Ein eindimensionales Streuproblem.- 23.1 Spektraldarstellungen und Streumatrix.- 23.2 Konstruktion der Spektraldarstellung von T2.- 23.3 Die Streumatrix für ein explizit lösbares Problem.- 24 Existenz und Vollständigkeit der Wellenoperatoren nach V. Enß.- 24.1 Eigenschaften von Enß-Störungen und die Existenz der Wellenoperatoren.- 24.2 Exkurs über die Dilatationsgruppe und ihren Generator.- 24.3 Ein- und auslaufende Zustände; der Zerlegungssatz.- 24.4 Abschluß des Beweises des Satzes von Enß.- 25 Prinzipien der Mehrkanalstreuung.- 25.1 Vorüberlegungen.- 25.2 N-Teilchen-Streuung ohne äußeres Feld.- 25.3 N-Teilchen-Streuung im äußeren Feld.- Literatur.

Notă biografică

Prof. Dr. Joachim Weidmann, Universität Frankfurt

Textul de pe ultima copertă

Die im ersten Teil des Buchs dargestellten Grundlagen der Theorie der linearen Operatoren in Hilberträumen werden hier benutzt, um die Spektraltheorie von Ein- und Mehrteilchen-Schrödingeroperatoren sowie des Dirac-Operators eingehend zu untersuchen. Die Grundlagen der "einfachen" Streutheorie, sowie deren wichtigste Resultate der letzten Jahrzehnte werden ausführlich dargestellt; abschließend werden die Grundprinzipien der Mehr-Kanal-Streuung entwickelt.

Caracteristici

Präzise und verständlich: Die mathematischen Grundlagen der Quantenmechanik