Loss Models – Further Topics: Wiley Series in Probability and Statistics
Autor SA Klugmanen Limba Engleză Hardback – 26 sep 2013
Din seria Wiley Series in Probability and Statistics
- 20% Preț: 446.47 lei
- 14% Preț: 882.53 lei
- 14% Preț: 734.43 lei
- 5% Preț: 1096.56 lei
- 23% Preț: 767.52 lei
- 20% Preț: 512.10 lei
- 24% Preț: 742.26 lei
- 24% Preț: 561.57 lei
- 9% Preț: 810.98 lei
- 24% Preț: 678.66 lei
- 24% Preț: 571.26 lei
- 24% Preț: 885.94 lei
- 22% Preț: 989.25 lei
- 24% Preț: 816.66 lei
- 8% Preț: 571.59 lei
- 14% Preț: 794.49 lei
- Preț: 313.49 lei
- 24% Preț: 701.55 lei
- 24% Preț: 908.75 lei
- 24% Preț: 779.16 lei
- 24% Preț: 739.43 lei
- 24% Preț: 840.12 lei
- 24% Preț: 709.66 lei
- 20% Preț: 432.39 lei
- 20% Preț: 442.06 lei
- 24% Preț: 1001.21 lei
- 20% Preț: 481.53 lei
- 24% Preț: 831.33 lei
- 24% Preț: 817.10 lei
- 9% Preț: 1156.10 lei
- 9% Preț: 1018.55 lei
- 9% Preț: 1084.76 lei
- 9% Preț: 959.15 lei
- 9% Preț: 1049.41 lei
- 9% Preț: 1005.45 lei
- 9% Preț: 2242.09 lei
- 9% Preț: 2900.07 lei
- 9% Preț: 1052.38 lei
- 9% Preț: 1057.14 lei
- 9% Preț: 1703.85 lei
- 9% Preț: 1715.64 lei
- 27% Preț: 1197.22 lei
- 9% Preț: 967.34 lei
- 9% Preț: 956.95 lei
- 9% Preț: 961.92 lei
- 9% Preț: 1148.91 lei
- 9% Preț: 1278.54 lei
- 5% Preț: 1257.50 lei
- 9% Preț: 1271.30 lei
- 9% Preț: 950.46 lei
Preț: 1044.32 lei
Preț vechi: 1430.57 lei
-27% Nou
Puncte Express: 1566
Preț estimativ în valută:
199.88€ • 207.89$ • 167.50£
199.88€ • 207.89$ • 167.50£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781118343562
ISBN-10: 1118343565
Pagini: 368
Dimensiuni: 178 x 258 x 25 mm
Greutate: 0.91 kg
Ediția:New.
Editura: Wiley
Seria Wiley Series in Probability and Statistics
Locul publicării:Hoboken, United States
ISBN-10: 1118343565
Pagini: 368
Dimensiuni: 178 x 258 x 25 mm
Greutate: 0.91 kg
Ediția:New.
Editura: Wiley
Seria Wiley Series in Probability and Statistics
Locul publicării:Hoboken, United States
Public țintă
This book is an essential resource for students and aspiring actuaries who are preparing to take exams beyond C/4 of the SOA and CAS sequence. It is also a must–have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with advanced loss and risk models in their everyday work.Cuprins
Preface xi 1 Introduction 1 2 Coxian and related distributions 3 2.1 Introduction 3 2.2 Combinations of exponentials 4 2.3 Coxian-2 distributions 8 3 Mixed Erlang distributions 11 3.1 Introduction 11 3.2 Members of the mixed Erlang class 13 3.3 Distributional properties 18 3.4 Mixed Erlang claim severity models 22 4 Extreme value distributions 25 4.1 Introduction 25 4.2 Distribution of the maximum 27 4.3 Stability of the maximum of the extreme value distribution 31 4.4 The Fisher--Tippett theorem 33 4.5 Maximum domain of attraction 34 4.6 Generalized Pareto distributions 37 4.7 Stability of excesses of the generalized Pareto 39 4.8 Limiting distributions of excesses 40 4.9 Parameter estimation 42 5 Analytic and related methods for aggregate claim models 55 5.1 Introduction 55 5.2 Elementary approaches 58 5.3 Discrete analogues 63 5.4 Right-tail asymptotics for aggregate losses 67 6 Computational methods for aggregate models 77 6.1 Recursive techniques for compound distributions 77 6.2 Inversion methods 79 6.3 Calculations with approximate distributions 84 6.4 Comparison of methods 90 6.5 The individual risk model 91 7 Counting Processes 101 7.1 Nonhomogeneous birth processes 101 7.2 Mixed Poisson processes 117 8 Discrete Claim Count Models 125 8.1 Unification of the (a, b, 1) and mixed Poisson classes 125 8.2 A class of discrete generalized tail-based distributions 133 8.3 Higher order generalized tail-based distributions 140 8.4 Mixed Poisson properties of generalized tail-based distributions 146 8.5 Compound geometric properties of generalized tail-based distributions 153 9 Compound distributions with time dependent claim amounts 165 9.1 Introduction 165 9.2 A model for inflation 169 9.3 A model for claim payment delays 180 10 Copula models 193 10.1 Introduction 193 10.2 Sklar's theorem and copulas 194 10.3 Measures of dependency 196 10.4 Tail dependence 197 10.5 Archimedean copulas 198 10.6 Elliptical copulas 203 10.7 Extreme value copulas 206 10.8 Archimax copulas 210 10.9 Estimation of parameters 210 10.10 Simulation from Copula Models 218 11 Continuous-time ruin models 223 11.1 Introduction 223 11.2 The adjustment coefficient and Lundberg's inequality 225 11.3 An integrodifferential equation 233 11.4 The maximum aggregate loss 238 11.5 Cramer's asymptotic ruin formula and Tijms' approximation 242 11.6 The Brownian motion risk process 249 11.7 Brownian motion and the probability of ruin 253 12 Interpolation and smoothing 259 12.1 Introduction 259 12.2 Interpolation with Splines 261 12.3 Extrapolating with splines 268 12.4 Smoothing with Splines 269 Appendix A: An inventory of continuous distributions 277 A.1 Introduction 277 A.2 transformed beta family 281 A.3 transformed gamma family 285 A.4 Distributions for large losses 288 A.5 Other distributions 289 A.6 Distributions with finite support 291 Appendix B: An inventory of discrete distributions 293 B.1 Introduction 293 B.2 The (a, b, 0) class 294 B.3 The (a, b, 1) class 295 B.4 The compound class 298 B.5 A hierarchy of discrete distributions 299 Appendix C: Discretization of the severity distribution 301 C.1 The method of rounding 301 C.2 Mean preserving 302 C.3 Undiscretization of a discretized distribution 302 Appendix D: Solutions to Exercises 305 D.1 Chapter 4 305 D.2 Chapter 5 307 D.3 Chapter 6 308 D.4 Chapter 7 310 D.5 Chapter 8 316 D.6 Chapter 10 321 D.7 Chapter 11 324 D.8 Chapter 12 344 References 349
Notă biografică
STUART A. KLUGMAN, PhD, is Staff Fellow (Education) at the Society of Actuaries and Principal Financial Group Distinguished Professor Emeritus of Actuarial Science at Drake University. Dr. Klugman is a two-time recipient of the Society of Actuaries' Presidential Award. HARRY H. PANJER, PhD, is Distinguished Professor Emeritus in the Department of Statistics and Actuarial Science at the University of Waterloo, Canada. Dr. Panjer was previously president of the Canadian Institute of Actuaries and the Society of Actuaries. GORDON E. WILLMOT, PhD, is Munich Re Chair in Insurance and Professor in the Department of Statistics and Actuarial Science at the University of Waterloo, Canada. Dr. Willmot has authored more than eighty-five articles in the areas of risk theory, queuing theory, distribution theory, and stochastic modeling in insurance.