Cantitate/Preț
Produs

Low-Temperature Physics: an introduction for scientists and engineers: An introduction for scientists and engineers

Editat de P. V. E. McClintock, D.J. Meredith, J. K. Wigmore
en Limba Engleză Paperback – 8 noi 2012
This book is intended to provide a clear and unified introduction to the physics of matter at low temperatures, and to do so at a level accessible to researchers new to the field and to graduate and senior undergraduate students. Rapid scientific progress made over the last seven years in a number of specific areas-for example, high-Tc superconductivity and the quantum Hall effect-has inevitably rendered our earlier Matter at Low Temperatures somewhat out of date. We have therefore taken the opportunity to revise and amend the text in its entirety and, at the same time, to furnish it with what we believe to be a more apt title, emphasizing that it is with the physics of low temperatures that we are particularly concerned. Like its predecessor, Low-Temperature Physics is devoted to the fascinating and diverse phenomena that occur under conditions of extreme cold, many of which have no analogue at all in the everyday world at room temperature.
Citește tot Restrânge

Preț: 67673 lei

Preț vechi: 79615 lei
-15% Nou

Puncte Express: 1015

Preț estimativ în valută:
12951 13621$ 10788£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789401050104
ISBN-10: 9401050104
Pagini: 308
Ilustrații: VIII, 296 p.
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1. Introduction.- 1.1 The significance of low temperatures.- 1.2 The Third Law of Thermodynamics.- 1.3 Liquefaction of gases.- 1.4 Solids at low temperatures.- 1.5 Liquid helium.- 1.6 Macroscopic quantization.- 2. Phonons.- 2.1 The model of a solid at low temperatures.- 2.2 Phonon modes and propagation.- 2.3 Thermal properties.- 2.4 Lattice anharmonicity.- 2.5 Scattering of photons.- 2.6 Solid helium—a quantum solid.- 2.7 Phonons and disorder.- 3. Electrons.- 3.1 Electrons in solids.- 3.2 Studies of Fermi surfaces.- 3.3 Transport properties of metals.- 3.4 Scattering of electrons in metals.- 3.5 Semiconductors and localization.- 3.6 Low-dimensional electron systems.- 4. Superconductivity.- 4.1 The transition to the superconducting state.- 4.2 Thermal properties.- 4.3 Electric, magnetic and electrodynamic properties.- 4.4 Theory of superconductivity.- 4.5 Consequences of the BCS theory.- 4.6 Josephson effects.- 4.7 Type II superconductivity.- 4.8 Superconductivity in non-standard systems.- 4.9 High-temperature superconductors.- 5. Liquid helium-4.- 5.1 Influence of Bose-Einstein statistics.- 5.2 Two-fluid properties.- 5.3 Wave propagation.- 5.4 Superfluidity and excitations.- 5.5 Quantized vortices in HeII.- 5.6 The HeII surface and creeping superfluid films.- 5.7 Critical velocities.- 5.8 Other boson fluids.- 6. Liquid helium-3 and3He-4He solutions.- 6.1 Influence of Fermi-Dirac statistics.- 6.2 Properties of normal liquid 3He.- 6.3 The Landau theory of liquid 3He.- 6.4 Superfluid phases of 3He.- 6.5 Liquid 3He-4He solutions.- 6.6 Other fermion fluids.- 7. Experimental methods at low temperatures.- 7.1 Principles of cryostat design.- 7.2 Cooling with 4He.- 7.3 Cooling with 3He.- 7.4 Magnetic cooling.- 7.5 Thermometry and instrumentation.- 8. Applications.- 8.1 Uses oflow temperatures.- 8.2 High-current and magnetic-field applications of superconductivity.- 8.3 Low-temperature electronics.- 8.4 Uses of liquefied gases.

Recenzii

Will serve its intended readership well. - Nature