Cantitate/Preț
Produs

Machine Behavior Design And Analysis: A Consensus Perspective

Autor Yinyan Zhang, Shuai Li
en Limba Engleză Hardback – 14 mar 2020
In this book, we present our systematic investigations into consensus in multi-agent systems. We show the design and analysis of various types of consensus protocols from a multi-agent perspective with a focus on min-consensus and its variants. We also discuss second-order and high-order min-consensus. A very interesting topic regarding the link between consensus and path planning is also included. We show that a biased min-consensus protocol can lead to the path planning phenomenon, which means that the complexity of shortest path planning can emerge from a perturbed version of min-consensus protocol, which as a case study may encourage researchers in the field of distributed control to rethink the nature of complexity and the distance between control and intelligence. We also illustrate the design and analysis of consensus protocols for nonlinear multi-agent systems derived from an optimal control formulation, which do not require solving a Hamilton-Jacobi-Bellman (HJB) equation.
The book was written in a self-contained format. For each consensus protocol, the performance is verified through simulative examples and analyzed via mathematical derivations, using tools like graph theory and modern control theory. The book’s goal is to provide not only theoretical contributions but also explore underlying intuitions from a methodological perspective.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 55131 lei  38-44 zile
  Springer Nature Singapore – 14 mar 2021 55131 lei  38-44 zile
Hardback (1) 64203 lei  6-8 săpt.
  Springer Nature Singapore – 14 mar 2020 64203 lei  6-8 săpt.

Preț: 64203 lei

Preț vechi: 75533 lei
-15% Nou

Puncte Express: 963

Preț estimativ în valută:
12288 12664$ 10374£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811532306
ISBN-10: 9811532303
Pagini: 183
Ilustrații: XVII, 183 p. 44 illus., 38 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.46 kg
Ediția:1st ed. 2020
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Chapter 1: Introduction to Collective Machine Behavior.-  Chapter 2: Second-Order Min-Consensus.- Chapter 3: Consensus of High-Order Discrete-Time Multi-Agent Systems.- Chapter 4: Continuous-Time Biased Min-Consensus.- Chapter 5: Discrete-Time Biased Min-Consensus.- Chapter 6: Biased Consensus Based Distributed Neural Network.- Chapter 7: Predictive Suboptimal Consensus.- Chapter 8: Adaptive Near-Optimal Consensus.

Notă biografică

Yinyan Zhang received his B.E. degree from Sun Yat-sen University, Guangzhou, China and Ph.D. degree from the Hong Kong Polytechnic University, Hong Kong SAR, China. He was a Postdoctoral Fellow with the Department of Computing, Hong Kong Polytechnic University. Currently, he is a Professor with the College of Cyber Security, Jinan University, Guangzhou, China. His main research interests include multi-agent systems, intelligent control, robotics, and security and control of cyber-physical systems. He has published more than 40 scientific papers as an author or co-author, including 20 IEEE transaction papers.
Shuai Li received his B.E. degree in Precision Mechanical Engineering from Hefei University of Technology, China in 2005, his M.E. degree in Automatic Control Engineering from the University of Science and Technology of China in 2008, and his Ph.D. in Electrical and Computer Engineering from the Stevens Institute of Technology, USA in 2014. He iscurrently affiliated with the School of Engineering, Swansea University, UK. His main research interests include neural networks, robotics, control of networked systems, computation and optimization. He has been working on the research and application of neural networks/dynamics for more than 10 years, and has published more than 100 scientific papers. In addition, he is now serving as an associate editor of the International Journal of Advanced Robotic Systems, Frontiers in Neurorobotics, Neural Processing Letters, and Journal of Rehabilitation Robotics, and as an editorial board member for the International Journal of Distributed Sensor Networks and Neural Computation & Applications.


Textul de pe ultima copertă

In this book, we present our systematic investigations into consensus in multi-agent systems. We show the design and analysis of various types of consensus protocols from a multi-agent perspective with a focus on min-consensus and its variants. We also discuss second-order and high-order min-consensus. A very interesting topic regarding the link between consensus and path planning is also included. We show that a biased min-consensus protocol can lead to the path planning phenomenon, which means that the complexity of shortest path planning can emerge from a perturbed version of min-consensus protocol, which as a case study may encourage researchers in the field of distributed control to rethink the nature of complexity and the distance between control and intelligence. We also illustrate the design and analysis of consensus protocols for nonlinear multi-agent systems derived from an optimal control formulation, which do not require solving a Hamilton-Jacobi-Bellman (HJB) equation.
The book was written in a self-contained format. For each consensus protocol, the performance is verified through simulative examples and analyzed via mathematical derivations, using tools like graph theory and modern control theory. The book’s goal is to provide not only theoretical contributions but also explore underlying intuitions from a methodological perspective.

Caracteristici

The first book focusing on min-consensus and relevant issues for multi-agent systems Includes both theoretical analyses of the models and simulative examples of various consensus protocols Convenient and suitable for undergraduate or postgraduate students as well as academic and industrial researchers from the fields of distributed computing, distributed control, consensus, and path planning