Cantitate/Preț
Produs

Machine Learning and Data Mining in Aerospace Technology: Studies in Computational Intelligence, cartea 836

Editat de Aboul Ella Hassanien, Ashraf Darwish, Hesham El-Askary
en Limba Engleză Paperback – 14 aug 2020
This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering.

This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 123252 lei  6-8 săpt.
  Springer International Publishing – 14 aug 2020 123252 lei  6-8 săpt.
Hardback (1) 123860 lei  6-8 săpt.
  Springer International Publishing – 16 iul 2019 123860 lei  6-8 săpt.

Din seria Studies in Computational Intelligence

Preț: 123252 lei

Preț vechi: 154065 lei
-20% Nou

Puncte Express: 1849

Preț estimativ în valută:
23590 24587$ 19638£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030202149
ISBN-10: 3030202143
Ilustrații: VIII, 232 p. 97 illus., 62 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.35 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Computational Intelligence

Locul publicării:Cham, Switzerland

Cuprins

Tensor-based anomaly detection for satellite telemetry data.- Machine learning in satellites monitoring and risk challenges.- Formalization, prediction and recognition of expert evaluations of telemetric data of artificial satellites based on type-II fuzzy sets.- Intelligent health monitoring systems for space missions based on data mining techniques.- Design, implementation, and validation of satellite simulator and data packets analysis.- Crop yield estimation using decision trees and random forest machine learning algorithms on data from terra (EOS AM-1) & aqua (EOS PM-1) satellite data.- Data analytics using satellite remote sensing in healthcare applications.- Design, Implementation, and Testing of Unpacking System for Telemetry Data of Artificial Satellites: Case Study: EGYSAT1.- Multiscale Satellite Image Classification using Deep Learning Approach.- Security approaches in machine learning for satellite communication.- Machine learning techniques for IoT intrusions detection inaerospace cyber physical systems.

Textul de pe ultima copertă

This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering.
 
This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.

Caracteristici

Explores the main concepts, algorithms, and techniques of machine learning and data mining for aerospace technology Provides essential information on data mining and machine learning for satellite monitoring Presents an experimental implementation of telemetry data processing to identify hidden events using various data mining techniques